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5:40pm BI1-MoE-1 Advanced BioAFM for Temporal Analysis, Amy Gelmi, 
RMIT University, Australia INVITED 

Electrical stimulation, a physical stimulation which can be delivered via a 
conductive biomaterial interface, directs human mesenchymal stem cell 
(hMSC) differentiation towards different cell tissue types.[1] Electrical 
stimulation conditioning offers a promising approach in directing stem cell 
fate. Conductive biomaterials are commonly used to provide either a 
passively conductive substrate, or actively provide 'smart' electrical 
stimulation of stem cells for tissue engineering. However, the mechanisms 
in which cells transduce these electrical signals into specific phenotype 
differentiation are poorly understood, restricting the intelligent design of 
stimulation protocols for targeted differentiation. 

How the stem cells transduce an electrical signal into a biological response 
is explored via different classes of conductive biomaterials. Immediate 
changes in the stem cells during and post-stimulation is characterised, using 
live cell bio-AFM for morphological and biomechanical changes, 
complemented with standard biological characterisation. The advanced 
bioAFM technique delivered unprecedented intracellular biomechanical 
information of live cells undergoing simultaneous electrical stimulation. 

For the first time we have characterised the transient mechanical response 
of hMSC to electrical stimulation, and related that to controlling stem cell 
differentiation towards osteogenesis. The knowledge gained from this study 
helps to further the intelligent design of stimulation parameters for 
targeted differentiation outcomes when using a conductive biomaterial. 

[1] Gelmi, A., Schutt, C. E., Stimuli-Responsive Biomaterials: Scaffolds for 
Stem Cell Control. Adv. Healthcare Mater. 2020, 10, 2001125. 

6:20pm BI1-MoE-3 GCIB-SIMS Analysis of Skin Cancer Samples, John S. 
Fletcher, K. Sjögren Cehajic, K. Dimovska Nilsson, O. Zaar, D. Katasarelias, J. 
Paoli, R. Olofsson Bagge, N. Neittaanmäki, University of Gothenburg, 
Sweden 

The use of gas cluster ion beams (GCIBs) for secondary ion mass 
spectrometry (SIMS) analysis provides softer ejection of biomolecular ions 
and has created opportunities for meeting the challenges of clinical 
researchers who require chemical specific imaging of different sample type 
from cells to tissue biopsies. Here we use a J105 Buncher-ToF SIMS 
instrument (Ionoptika Ltd, UK) to perform in situ lipidomics of skin cancer 
samples. GCIB-SIMS analysis enabled detailed spatial-lipidomics that could 
be directly correlated with conventional histopathological analysis of 
consecutive H&E slides. Here we present work where melanoma cancer 
samples were the target in order to investigate the chemical changes 
associated with disease progression and also to investigate if different 
metastatic pathways could be distinguished based on the chemical 
signature of the tumours. Primary tumours were analysed along with 
"healthy/normal" skin from the same subject along with metastatic tumour 
samples that had spread via either the lymphatic system or through the 
blood. Significant differences in the lipid profiles were found in primary 
compared to metastatic melanomas, notably an increase in 
phosphatidylethanolamine lipids relative to phosphatidylinositol lipids and 
an increase in GM3 gangliosides in the metastatic samples. Furthermore, 
analysis of the data from in-transit versus distant metastases samples 
highlighted that specific glycerophospholipids, and a difference in the long 
versus shorter chain GM3 gangliosides, discriminated the metastatic routes. 
The data is also compared to other skin cancer samples including such as 
aggressive basal cell carcinoma. Challenges related to data processing and 
spectral annotation are also discussed. 

6:40pm BI1-MoE-4 Depth Correction of 3D SIMS Depth Profiling Images of 
Biomaterials Using Only Secondary Ion Signal Intensities, M. Brunet, B. 
Gorman, Mary Kraft, University of Illinois Urbana-Champaign 

We have developed a depth correction strategy for three-dimensional (3D) 
SIMS depth profiling images of biomaterials that solely employs secondary 
ion signal intensity. In this approach, the secondary ion images that were 
collected during depth profiling are used to create a model of the sample’s 
morphology at the time that each depth profiling image was acquired. Then 
these models of the sample’s morphology are used to shift the voxels in the 
3D image to the correct z-position. Comparison of the morphology models 
created using the secondary ions and the secondary ion images the usage 
of secondary ion signals with high intensities tends to produce more 

accurate morphology models. However, even 3D SIMS images that were 
depth corrected using secondary ions with relatively low intensities were 
more accurate than uncorrected 3D SIMS depth profiling images. This 
ability to use secondary ion images to depth correct 3D SIMS depth 
profiling images in the absence of correlated measurements of sample 
topography or knowledge of sputter rate expands the range of SIMS depth 
profiling data sets that may not be depth corrected. 

7:00pm BI1-MoE-5 Label-Free High-Resolution Molecular Imaging of Sex 
Steroid Hormones in Zebrafish by Water Cluster Secondary Ion Mass 
Spectrometry (Cluster SIMS), Kate McHardy, N. Sano, Ionoptika Ltd., UK; E. 
Lau, M. Bailey, University of Surrey, U.K. 

Sex steroid hormones are essential biomolecules for vertebrates and are 
involved in the maintenance of pregnancy, development of secondary 
sexual characteristics and diseases such as osteoporosis and breast cancer. 
Visualising the distribution of steroids contributes to further understanding 
of disease. However, analysis of steroids is difficult; their low polarity leads 
to poor ionisation efficiency, meaning they need to be derivatised for 
conventional analyses. Furthermore, the steroid signals overlap with a 
MALDI matrix background. 

Water Cluster SIMS is a high-sensitivity mass spectrometry technique for 
imaging complex-mixture materials without derivatisation or the use of 
matrix. We demonstrate imaging of sex steroid hormones in zebrafish (an 
ideal vertebrate model organism) with a Water Cluster SIMS instrument. 

An adult female zebrafish was prepared for this work. It was embedded 
while fresh in 0.75% HPMC and 0.25% PVP embedding media to facilitate 
sectioning. The whole block was flash-frozen in a dry-ice and isopropanol 
bath. The sample was sectioned to 20 μm at -25 °C and thaw-mounted onto 
a conductive indium-tin-oxide (ITO) coated glass. The section was dried 
while frozen in a vacuum desiccator, and then directly analysed without any 
matrix application for the analysis. The Cluster SIMS analyses were then 
performed with the J105 SIMS Cluster SIMS (Ionoptika Ltd), using a 70 keV 
(H2O)n beam, where n is in the range of 15,000-35,000, and also separately 
with a 40 keV C60 beam. High-resolution images were acquired with a pixel 
size of < 1 micron. 

Water Cluster SIMS uses a high-energy beam of ionised clusters of water to 
sputter and ionise molecules from a surface. It is far less damaging and 
generates far fewer fragment ions than traditional ToF SIMS, but retains 
many of the benefits of that technology such as high-spatial-resolution 
imaging. As a result, detailed images of the distribution of sex steroid 
hormone molecules in the zebrafish are visible. Preliminary data shows that 
it is possible to map the chemical distribution of steroids in the ovary area. 
In addition, we also detected lipid ions related to the embryo or oocyte 
around the ovary area as unique distributions. 
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