Diamond-like carbon thin film deposition using low-energy ion beams

Figure 1. Mass spectra of Ar:C₂H₂ plasma at 50% C₂H₂ content and various φ_{ext} .

Figure 2. Mass spectra of Ar:C₂H₂ plasma at φ_{ext} = 100 V and various C₂H₂ content.

Figure 3. Mass spectra of the Ar:C₂H₂:N₂ plasma at φ_{ext} = 100 V and various N₂ content.

Figure 4. Sample deconvolution of DLC Raman spectrum at visible light irradiation (532 nm). D and G fits and peaks are labeled respectively

Figure 5. G positions and I_D/I_G ratios calculated from the deconvoluted D and G peaks acquired from the Raman spectra of films illuminated using visible light.

Figure 6. G positions and I_D/I_G ratios calculated from the deconvoluted D and G peaks acquired from the Raman spectra of films illuminated using UV light.

Figure 7. Calculated sp³ fraction using the model (Eq. 2.5) derived by Cui et al. (2010) from the I_D/I_G ratios and G positions of deconvoluted D and G peaks obtained from visible and UV Raman spectroscopy.

Figure 8. The variation of the G position and I_D/I_G from the obtained D and G peak deconvolution for N-doped and undoped samples.

Figure 9. The variation of sp³ content obtained empirically by (Cui et al., 2010) for N-doped and undoped samples.

Figure 9. The variation of the $I_{CN} \, / \, I_G$ and $sp^3 \, content for N-doped samples$