Giant chiral magnetoelectric oscillations in a van der Waals multiferroic

Frank Y. Gao1,†, Xinyue Peng1,†, Xinle Cheng2, Emil Vi.as Bostr.m2,3, Dong Seob Kim1, Ravish K. Jain4, Deepak Vishnu4,5, Kalaivanan Raju4, Raman Sankar4, Shang-Fan Lee4, Michael A. Sentef2,6, Takashi Kurumaji7, Xiaoqin Li1, Peizhe Tang2, Angel Rubio2,3,8,*, Edoardo Baldini1,*

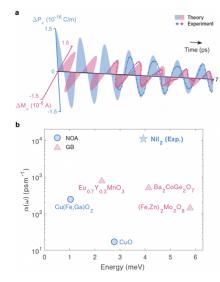
Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, USA

2Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany 3Nano-Bio Spectroscopy Group, Departamento de F.sica de Materiales, Universidad del Pa.s Vasco, San Sebasti.n, Spain

4Institute of Physics, Academia Sinica, Taipei, Taiwan 5Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 6Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany

7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA

8Center for Computational Quantum Physics, The Flatiron Institute, New York, NY, USA


†These authors contributed equally to this work.

*Corresponding authors:

edoardo.baldini@austin.utexas.edu, angel.rubio@mpsd.mpg.de

Helical spin structures are expressions of magnetically-induced chirality, entangling the dipolar and magnetic orders within materials₁₋₄. The recent discovery of helical van der Waals multiferroics down to the ultrathin limit raises prospects of large chiral magnetoelectric correlations in two dimensions₅, 6. However, the exact nature and magnitude of these couplings have remained unknown to date. Here, we perform a precision measurement of the dynamical magnetoelectric coupling for an enantiopure domain in an exfoliated van der Waals multiferroic.

We evaluate this interaction in resonance with a collective electromagnon mode, capturing the impact of its oscillations on the material's dipolar and magnetic orders with a suite of ultrafast optical probes. Our data reveals a giant natural optical activity at terahertz frequencies, characterized by quadrature modulations between the electric polarization and magnetization components. First-principles calculations further reveal that these chiral couplings originate from the synergy between the non-collinear spin texture and relativistic spin-orbit interactions, resulting in substantial enhancements over lattice-mediated effects. Our findings highlight the potential for intertwined orders to enable exotic functionalities in the two-dimensional limit and pave the way for the development of van der Waals magnetoelectric devices operating at terahertz speeds.

Recently, a concerted effort has been made to extend type-II multiferroics into the atomically thin regime by exploiting van der Waals materials that crystallize in centrosymmetric structuress, 6. These quasi-two-dimensional multiferroics have the potential to achieve enhanced magnetoelectric properties with a level of tunability that is beyond the reach of traditional threedimensional helimagnets. At finite frequency, such properties are expected to be controlled by different manifestations of the dynamical magnetoelectric coupling, expressed via the first-order magnetoelectric response $\Delta P_i(\omega) = \alpha_{ij}(\omega) \Delta H_i(\omega)$. In this relation, $\alpha_{ij}(\omega)$ is the complex dynamical magnetoelectric susceptibility tensor, which represents the cross-coupling between the modulation of the material's electric polarization $\Delta P_i(\omega)$ and magnetizing field $\Delta H_i(\omega)$. Among the various phenomena governed by this tensor, the natural optical activity stands out as the effect most intimately connected to the spontaneous breaking of chiral symmetry8, 9. This property describes the rotation of light polarization that is symmetric under time reversal and antisymmetric under spatial inversion, and its strength can be enhanced in resonance with the collective modes of the magnetochiral order. Unveiling the presence and magnitude of this elusive effect in the realm of exfoliated van der Waals multiferroics is pivotal for realizing highspeed chiral applications based on artificially stacked layered structures. However, the lack of suitable probing methods has so far hindered the identification of this phenomenon at the microscopic length scales of individual chiral domains within a van der Waals flake.

To address this challenge, here we perform a precision measurement of the dynamical magnetoelectric coupling for a native enantiopure domain of the van der Waals multiferroic nickel iodide (NiI₂)₁₀. We use a tailored laser pulse to coherently drive an electrically active magnon mode and directly track the resulting modulation of the dipolar and spin-spiral orders in real time via optical second harmonic generation (SHG) and Kerr rotation microscopy. Our protocol uncovers the existence of natural optical activity at terahertz frequencies, signaled by the emergence of a π /2 phase shift between the electric polarization and magnetization oscillations. Extraction of the corresponding magnetoelectric tensor element reveals that the strength of natural optical activity greatly surpasses that of any other known helimagnet. Our comprehensive analysis, which incorporates model Hamiltonian, density-functional theory (DFT), and group theory calculations, fully rationalizes these findings, underscoring the role of the relativistic spin-orbit interaction in the origin of such giant natural optical activity.

References

- 1. Khomskii, D. Classifying multiferroics: Mechanisms and effects. Physics 2, 20 (2009).
- 2. Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).
- 3. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 1–14 (2016).
- 4. Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).
- 5. Ju, H. et al. Possible persistence of multiferroic order down to bilayer limit of van derWaals material NiI₂. Nano Lett. 21, 5126–5132 (2021).
- 6. Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601-605 (2022).
- 7. Takahashi, Y., Shimano, R., Kaneko, Y., Murakawa, H. & Tokura, Y. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nat. Phys. 8, 121–125 (2012).
- 8. Iguchi, S., Masuda, R., Seki, S., Tokura, Y. & Takahashi, Y. Enhanced gyrotropic birefringence and natural optical activity on electromagnon resonance in a helimagnet. Nat. Commun. 12, 6674 (2021).
- 9. Masuda, R., Kaneko, Y., Tokura, Y. & Takahashi, Y. Electric field control of natural optical activity in a multiferroic helimagnet. Science 372, 496–500 (2021).
- 10. Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).