## Enhanced Dielectric Properties of HfO<sub>2</sub> Thin Films Produced Via Novel Catalytic Atomic Layer Deposition Process S. Harris<sup>1</sup>, D. Lindblad<sup>1</sup>A. Wang<sup>1</sup>, A. Dameron<sup>1</sup>, M. Weimer<sup>1</sup>

<sup>1</sup>Forge Nano, 12300 Grant St. Thornton, CO, 80241

Optimized high- $\kappa$  dielectric materials are widely utilized as gate oxides and dielectric barriers in compound semiconductor devices such as GaN HEMT and MEMS [1]. Monolithic high- $\kappa$  dielectric materials have inherent performance tradeoffs demonstrated by hafnium oxide (HfO<sub>2</sub>) which has a high dielectric constant but a low breakdown voltage and high leakage current limiting overall efficacy as a dielectric barrier [2]. Composite materials such as HfAlO<sub>x</sub> can improve dielectric performance by combining the high dielectric constant of HfO<sub>2</sub> with the wider band gap and higher breakdown voltage of aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) unlocking capabilities for next generation dielectric materials [2]. Atomic layer deposition (ALD) exploits precise control over self-limiting surface chemistry allowing for discreet nanolayers that can be tailored to optimize bulk film dielectric performance with a level of control that is not possible via other deposition techniques (CVD and PVD). This work demonstrates HfO<sub>2</sub> thin films deposited via ALD with enhanced dielectric properties achieved through the addition of a novel catalytic conversion step known as a CRISP Process.

HfO<sub>2</sub> deposited via the CRISP process has 29% higher GPC, 7% higher density, more ideal stoichiometry, 44% less carbon impurity and larger crystal grains when compared to films growth with O<sub>3</sub> alone. In pursuit of high performing dielectric materials several compositions of ALD deposited nanolaminates were studied through the incorporation of small amounts of Al<sub>2</sub>O<sub>3</sub> into bulk HfO<sub>2</sub>. Discreet nanolayer formation is demonstrated via cross sectional scanning electron microscopy (SEM) shown in Figure 1. With varying amounts of  $Al_2O_3$ , dielectric constant,  $\kappa$ , can be increased from 16.2 to 19.2, the dielectric strength (breakdown voltage) can be increased from 6.9 to 7.8 MV/cm, and the leakage current density can be reduced from  $3.3 \times 10^{-9}$  to  $8.1 \times 10^{-12}$  J at 60Vm. Work is ongoing to tune layer composition for the best overall performance. In the future, full characterization in GaN HEMT devices is planned for both the  $HfO_2 - O_3$  and HfO<sub>2</sub> – CRISP processes.

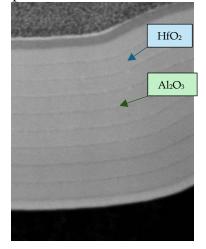
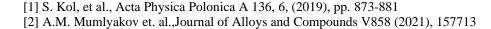




Figure 1: SEM image of  $HfAlO_x$  nanolaminate showing  $HfO_2$  layers (thick) and  $Al_2O_3$  layers (thin)



## **Supplementary Page**

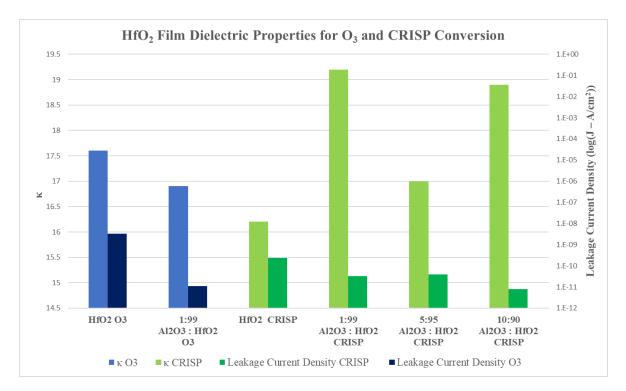



Figure 2: Dielectric properties of studied  $HfAlO_x$  thin film compositions. Dielectric constant  $\kappa$  at  $10^6$  Hz is displayed on the left axis in light blue for O<sub>3</sub> conversion and light green for CRISP conversion. Leakage current density at 60V is displayed on the right axis in dark blue for O<sub>3</sub> conversion and in dark green for CRISP conversion.