Epitaxial growth and properties of wide bandgap *p*-type NiGa₂O₄ on β -Ga₂O₃ for high voltage *p*-*n* heterojunctions with superior performance at elevated temperatures

Kingsley Egbo¹, Brooks Tellekamp¹, William A. Callahan^{1,2}, Andriy Zakutayev¹

¹National Renewable Energy Laboratory, Golden, CO 80401, USA

²Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA

Gallium oxide (β -Ga₂O₃) is a promising wide bandgap oxide semiconductor material with properties well-suited for high power electronics, and recent results show superior high voltage performance compared to the commercial state of the art [1],[2]. Due to the difficulty in the *p*-type doping of Ga₂O₃, unipolar devices based on Ga₂O₃ are prevalent. Several studies have explored bipolar devices using polycrystalline *p*-type oxides such as Nickel oxide and Tin (II) oxide grown on Ga₂O₃ to form heterojunctions[3][4]. However, resulting interface defects and grain boundaries decrease the electrical performance of these devices which directly affects the power device performances, such as breakdown characteristics, on-resistance, and mobility. Hence, the development of high-quality heteroepitaxy of a *p*-type layer with low structural defects on *n*-type Ga₂O₃ is essential to improve device performance in Ga₂O₃-based bipolar devices. For operation at high temperature, thermodynamically stable interfaces are also critical. Recent observations show that NiGa₂O₄ forms as a thermodynamical reaction product between Ga₂O₃ and NiO at the *p*-n heterojunction interface during high temperature operation. Hence the possibility of developing a *p*-type NiGa₂O₄ on Ga₂O₃ can circumvent this interface reaction and lead to the development of thermodynamically stable high temperature devices.

In this work, we demonstrate the epitaxial growth of wide bandgap p-type NiGa₂O₄ thin films on

Ga₂O₃ and the device performance of vertical *p-n* heterojunction diodes processed using these heterostructures. Undoped NiGa2O4 thin films were grown on three different orientations of β -Ga₂O₃ wafers and on a reference Al₂O₃ substrates by pulsed laser deposition. Structural characterizations of the NiGa₂O₄ thin films show that 002-oriented NiGa₂O₄ grows epitaxially on β -Ga₂O₃ (100) while NiGa₂O₄(220) was stabilized on β -Ga₂O₃ (010) orientation. But thin films of NiGa₂O₄ grown on $Ga_2O_3(001)$ was polycrystalline. The reflection high energy diffraction (RHEED) patterns during growth were streaky indicating relatively flat surfaces. A bandgap of ~3.95 eV is obtained for NiGa₂O₄ thin films from spectroscopic ellipsometry.

The fabricated NiGa₂O₄/ β -Ga₂O₃ vertical p-n Figure 1(a) Wide angle 2theta-omega scan of NiGa₂O₄(200) heterojunction devices demonstrated good specific on-resistance, excellent temperature dependent reverse leakage current and lower on-voltage compared to widely used NiO-

grown on $Ga_2O_3(100)$. Inset shows a 2D frame showing single crystalline growth (b) Phi scan of the NiGa₂O₄ and Ga₂O₃ layers (c) Absorption coefficient of NiGa₂O₄ thin film obtained from spectroscopic ellipsometry measurement.

 Ga_2O_3 heterojunctions. These performances demonstrate that NiGa₂O₄/ β -Ga₂O₃ p-n heterojunction diodes can be promising for high power devices with low on state power dissipation capable of operating at extreme environments.

- [1] S. J. Pearton et al., "A review of Ga2O3 materials, processing, and devices," Appl. Phys. Rev., vol. 5, no. 1, p. 011301, Mar. 2018, doi: 10.1063/1.5006941.
- [2] A. J. Green et al., "β-Gallium oxide power electronics," APL Mater., vol. 10, no. 2, p. 029201, Feb. 2022, doi: 10.1063/5.0060327.
- [3] K. Tetzner et al., "SnO/β-Ga2O3 heterojunction field-effect transistors and vertical p-n diodes," Appl. Phys. Lett., vol. 120, no. 11, p. 112110, Mar. 2022, doi: 10.1063/5.0083032.

[4] Sohel, S. H. et al. Gallium Oxide Heterojunction Diodes for Improved High-Temperature Performance. Preprint at http://arxiv.org/abs/2204.00112 (2022)

Supplementary Information:

Figure 2(a) Schematic of the device structure for fabricated NiGa₂O₄/Ga₂O₃ heterojunction diode (b) Estimated band diagram of the p-NiGa₂O₄/n-Ga₂O₃ junction using values from literature and determined bandgap (c) Room temperature breakdown of two p-NiGa₂O₄/n-Ga₂O₃ diodes (d) Temperature dependent J-V characteristics of the diode showing rectification at 600°C operating temperature.