Tuning the Curie Temperature of a 2D Magnet/Topological Insulator Heterostructure to Above Room Temperature by Epitaxial Growth

Wenyi Zhou,¹ Alexander J. Bishop,¹ Xiyue S. Zhang,²

Katherine Robinson,¹ Igor Lyalin,¹ Ziling Li,¹ Ryan Bailey-Crandell,¹

Thow Min Jerald Cham,² Shuyu Cheng,¹ Yunqiu Kelly Luo,^{2, 3, 4}

Daniel C. Ralph,^{2, 3} David A. Muller,^{2, 3} and <u>Roland K. Kawakami¹</u>

¹The Ohio State University, Department of Physics, Columbus, OH, USA

²Cornell University, Department of Physics, Ithaca, NY, USA

⁴University of Southern California, Department of Physics and Astronomy, Los Angeles,

CA, USA

Heterostructures of two-dimensional (2D) van der Waals (vdW) magnets and topological insulators (TI) are of substantial interest as candidate materials for efficient spin-torque switching, quantum anomalous Hall effect, and chiral spin textures. However, since many of the vdW magnets have Curie temperatures below room temperature, we want to understand how materials can be modified to stabilize their magnetic ordering to higher temperatures. In this work, we utilize molecular beam epitaxy to systematically tune the Curie temperature (T_C) in thin film Fe₃GeTe₂/Bi₂Te₃ from bulk-like values (~220 K) to above room temperature by increasing the growth temperature from 300 °C to 375 °C (Figure 1). For samples grown at 375 °C, cross-sectional scanning transmission electron microscopy (STEM) reveals the spontaneous formation of different Fe_mGe_nTe₂ compositions (e.g. Fe₅Ge₂Te₂ and Fe₇Ge₆Te₂/TI heterostructures with novel properties.

Figure 1. Temperature dependence of MCD loops for FGT samples (~ 4 nm) grown at 300 °C, 325 °C, 350 °C, and 375 °C on Bi_2Te_3 .

³Kavli Institute at Cornell, Ithaca, NY, USA

Supplementary Pages

Supplementary Figure. STEM investigations. (a) HAADF STEM image of an $FGT(6.4nm)/Bi_2Te_3(10 nm)$ heterostructure grown at 325 °C (for FGT). (b) HAADF STEM image of an $FGT(4 nm)/Bi_2Te_3(8 nm)$ heterostructure grown at 375 °C (for FGT) and a zoomed in BF STEM image with different atoms marked out in the left. The red arrow indicates the position of an intercalant atom. (c) EELS line profile of the $FGT(6.4 nm)/Bi_2Te_3(10 nm)$ heterostructure grown at 325 °C (for FGT) with the corresponding HAADF image on the left. (d) EELS line profile of the $FGT(4 nm)/Bi_2Te_3(8 nm)$ heterostructure grown at 375 °C (for FGT) with the corresponding HAADF image on the left. (d) EELS line profile of the $FGT(4 nm)/Bi_2Te_3(8 nm)$ heterostructure grown at 375 °C (for FGT) with the corresponding HAADF image on the left.