Charge Transport in SrTiO₃:Rh and BiVO₄ Nanoparticle Photocatalysts for Z-scheme Water Splitting

Brian T Zutter¹, Zejie Chen², Luisa Barrera³, Aliya S. Lapp¹, Austin Bhandarkar¹, Kenta Watanabe⁴, Akihiko Kudo⁴, Daniel Esposito⁵, Rohini Bala Chandran³, Shane Ardo², A. Alec Talin¹

¹Quantum and Electronic Materials Dept., Sandia National Laboratories, Livermore, CA, USA

 ²Department of Chemistry, University of California Irvine, Irvine, CA, USA
³Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
⁴Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
⁵Department of Chemical Engineering, Columbia University, New York, NY, USA

Solar-powered water splitting using nanoparticle photocatalyst suspensions is a promising route to economical, clean hydrogen production[1], [2]. In the Z-scheme approach, hydrogen and oxygen-evolving photocatalysts, such as SrTiO₃:Rh and BiVO₄, are coupled with a redox mediator to improve light absorption compared to single-photocatalyst systems[3]. A key step in the water-splitting process is the separation and transport of photo-excited electrons and holes to the photocatalyst surface. Here we characterize charge transport in individual SrTiO₃:Rh and BiVO₄ nanoparticles using a nanoprobe within a scanning electron microscope, and directly map internal electric fields with electron-beam induced current. Charge transport in SrTiO₃:Rh particles is limited by bulk defect states within the nanoparticle, in contrast to nearly Ohmic conduction in BiVO₄ nanoparticles. SrTiO₃:Rh particles contain insignificant built-in E fields, while BiVO₄ nanoparticles contain built-in E field between different facets of the nanoparticle which can efficiently separate e-h pairs. Inefficient charge transport and lack of built-in electric field explain why the H₂-evolving SrTiO₃:Rh nanoparticles are the limiting component within this Z-scheme system.

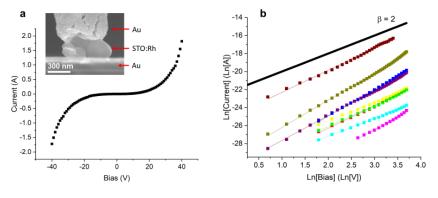


Figure 1: An individual STO:Rh nanoparticle with Pt co-catalysts is biased in situ within an SEM (a, inset). Transport data from 9 nanoparticles can be linearized on a log-log scale. The slope, β , of each I-V characteristic is near 2 (β =2 is plotted as a black

line), in agreement with SCLC conduction.

- [1] S. Chen, T. Takata, and K. Domen, Nat. Rev. Mater., vol. 2, no. 10, Art. no. 10, Aug. 2017
- [2] B. D. James, G. N. Baum, J. Perez, and K. N. Baum, Directed Technologies, Inc., Arlington, VA (United States), Dec. 2009. doi: 10.2172/1218403.
- [3] H. Kato, Y. Sasaki, N. Shirakura, and A. Kudo, J. Mater. Chem. A, vol. 1, no. 39, pp. 12327–12333, 2013, doi: 10.1039/C3TA12803B.