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High on-resistance due to low channel mobility and threshold voltage instability due to 

charge trapping are major concerns of SiC-based power MOSFET, and both issues are deeply 

correlated with poor SiO2/SiC interface property grown by thermal oxidation. One of the 

main causes of this severe interface degradation is residual carbon impurity remained near 

SiO2/SiC interface. Although the most common technique to improve SiO2/SiC interface 

quality is N incorporation into SiO2/SiC interface by post-oxidation annealing in NO (NO-

POA), the effect on mobility improvement is limited [1] and enhanced hole trapping is 

pointed out [2]. In this talk, we review the scheme of thermal oxidation and control of N atom 

profile to improve performance and reliability of SiC MOSFETs based on our recent results. 

We demonstrated ultrahigh-temperature oxidation at low oxygen partial pressure to enhance 

C ejection from SiO2/SiC interface during thermal oxidation [3]. Passive/active oxidation 

boundary for 4H-SiC(0001) surface was found to be at around 1600C under 0.3% O2/Ar 

ambient. As shown in Fig. 1(a), nearly ideal C-V curve can be obtained by ultrahigh-

temperature oxidation, while large hysteresis and positive flatband voltage shift were 

observed for conventional oxidation. The field-effect mobility increased from 3 to about 10 

cm2/Vs by performing ultrahigh-temperature oxidation (Fig. 1(b)). The reduction in C-related 

defects was confirmed by electron-spin-

resonance (ESR) spectroscopy [4]. We 

also found that SiC can be oxidized to 

form SiO2 under CO2 ambient at 

ultrahigh temperatures [5]. Furthermore, 

a combination of NO-POA and 

subsequent CO2 annealing at moderate 

temperature is effective in obtaining 

high-channel mobility and stable 

threshold voltage thanks to the selective 

removal of N atoms on SiO2 side at 

SiO2/SiC interface and compensation of 

oxygen vacancies [6].  
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Figure 1 (a) C-V characteristics of MOS capacitors 

and (b) field-effect mobilities of MOSFETs with 

conventional thermal oxidation (1200-1300C) 

and ultrahigh-temperature oxidation (1600C) 

under low O2 partial pressure [3]. 
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