Magnetoresistance, conductivity and magnetic properties of Sr and Co modified polycrystalline BiFeO₃

Azizur Rahman¹, Haoran Zhao¹, Rucheng Dai²⁺, Zhongping Wang², Zejun Ding¹ and Zengming Zhang^{2,3+}.

¹ Department of Physics, University of Science and Technology of China, Hefei 230026, China

² The Center of Physical Experiments, University of Science and Technology of China, Hefei 230026, China

³ Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China;

Abstract

 Sr^{2+} and Co^{3+} co-doping in an antiferromagnetic insulator BiFeO₃ (BFO), results the occurrence of room temperature conductivity and magnetoresistance and enhances the magnetic properties. Here we reported for a very first time the occurrence of magnetoresistance (MR%) up to 35% in polycrystalline BFO system with dopants of Sr and Co at room temperature. Bi³⁺ in A site of BFO substituted by Sr^{2+} results in the presentation of holes carrier and further changes its conductivity. The enhancement in MR% is observed with the increasing magnetic field and temperature. XPS results reveal that cobalt modification in Sr-doped BFO controls the formation of oxygen vacancies. Co substitution in Sr doped BFO also significantly enhances the magnetism, i.e. the values of saturation and remnant magnetization are 5 emu/g and 1.1 emu/g, respectively.

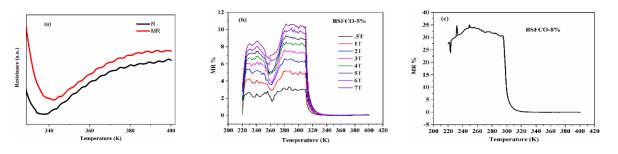


Figure (a) The room temperature metallic conductivity, (b) the magnetic field dependent MR% for 5% Cobalt doping in 15% Sr doped BFO and (c) MR% for 8% Cobalt doping in 15% Sr doped BFO at 7T. **References:**

- 1. Jin, S., et al. "Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films." *Science-AAAS-Weekly Paper Edition-including Guide to Scientific Information* 264.5157 (1994): 413-414.
- 2. J. M. Transcon, et al., Science, 1987, 235, 1373.