Phase Control of Ga₂O₃ Films Grown by Atomic Layer Epitaxy

V.D. Wheeler¹, N. Nepal¹, L.O. Nyakiti², D.R. Boris¹, S.G. Walton¹, D.J. Meyer¹, C.R. Eddy Jr. ^{1,+}

¹ U.S. Naval Research Laboratory, Washington DC, 20375 ² Dept. Materials Sci. & Engineer., Texas A&M University, College Station, TX 77843

Ga₂O₃ has attracted significant interest as an ultra-wide bandgap material for next generation high-power, high-temperature electronic device applications. While there are five polymorphs of Ga₂O₃, the β -Ga₂O₃ (monoclinic) is the most stable and most widely studied to-date. By comparison, the α -Ga₂O₃ phase is less energetically favorable but has a similar bandgap (5.3 eV) and a rhombohedral corundum crystal structure. The ability to attain this metastable state can encourage bandgap engineering between α -Al₂O₃ and α -In₂O₃ similar to other III-V alloys. In addition, Schottky barrier diodes made with α -Ga₂O₃ films have shown improved performance over both β -Ga₂O₃ and SiC [1], demonstrating the benefit of this polymorph in next generation devices. Here, we use atomic layer epitaxy (ALE) to produce high-quality, heteroepitaxial Ga₂O₃ films and demonstrate phase selectivity with variations in growth temperature, plasma chemistry and gas pressure.

ALE Ga₂O₃ films were grown on c-plane sapphire substrates in a Veeco Fiji 200 reactor. All films were produced using trimethylgallium and O₂ plasma precursors with pulse/purge times of 0.015s/10s and 10s/10s, respectively. The growth temperature, plasma gas flow, and pressure were varied to assess their impact on resulting film crystallinity and phase composition. Independent of growth conditions, all films were crystalline and highly resistivity with Ga/O ratios between 0.68-0.70 and no indication of C contamination by XPS.

Decreasing chamber pressure an order of magnitude during the plasma step drastically effected the resulting phase, yielding pure β -Ga₂O₃ at 80 mTorr and pure α -Ga₂O₃ at 8 mTorr. Additionally, at 350°C and 8 mTorr, the phase could be altered by a varying the O₂ plasma flow from 5-100 sccm. For these conditions, optical emission spectroscopy and ion flux measurements were made to correlate the impact of ions and other plasma species on the preferential promotion of different phases. By varying the growth temperature from 300 to 500°C at 8 mTorr, films went from mixed phase, to pure α -Ga₂O₃ at 350°C, to pure β -Ga₂O₃ at 500°C. High-quality β -Ga₂O₃ films were produced at 5sccm O₂ that had an RMS roughness of 0.38nm and XRD FWHM of 268 arc-sec for a 30nm film. At 40sccm, high-quality α -Ga₂O₃ films were obtained with an RMS roughness of 0.15nm and XRD FWHM of 250 arc-sec for a 30nm film. Thus, using ALE high-quality, phase selective films can be achieved to satisfy application requirements.

[1] S. Fujita, M. Oda, K. Kaneko and T. Hitora. JJAP 55, 1202A3 (2016).

⁺Author for correspondence: chip.eddy@nrl.navy.mil

Suplementary Page (Optional)

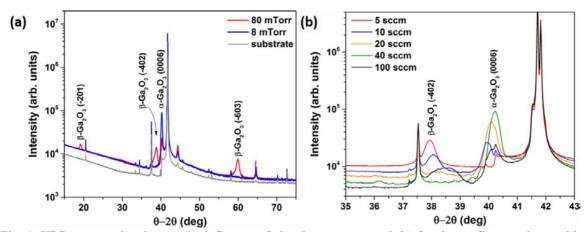


Fig. 1: XRD spectra showing (a) the influence of chamber pressure and (b) O_2 plasma flow on the resulting Ga_2O_3 phase.

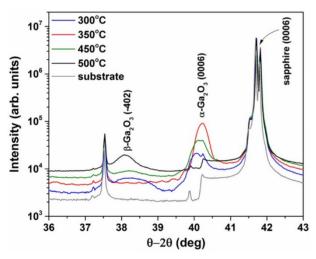


Fig. 2: XRD spectra showing phase selectivity of Ga_2O_3 with various growth temperatures at 8 mTorr