Effects of incorporating Si into Al₂O₃ gate oxides in GaN-MOSFETs

<u>E. Kojima¹</u>, K. Chokawa¹ H. Shirakawa¹, M. Araidai^{2,1}, K. Shiraishi^{2,1} and K. Shiozaki² and T.Kachi²

¹Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan ²Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan

There has been a growing interest in gallium nitride (GaN) as a material for nextgeneration power conversion devices. In order to realize GaN-MOSFETs, it is important to determine the most suitable gate oxide. Among the various materials for gate oxides, Al_2O_3 is one of the best owing to its relatively large conduction band offset (CBO) for GaN. However, the CBO of Al_2O_3 is smaller than that of SiO₂, which means the leakage current of GaN devices with Al_2O_3 gate oxides are higher than those with SiO₂ gate oxides. Leakage current can lead to instability of the threshold voltage. Kikuta et al. have reported that $Al_{1-x}Si_xO_3$ mixed oxides deposited by plasma-enhanced atomic layer deposition might achieve high reliability MOSFET devices with reduced leakage current.¹ In this study, we investigated the effect of incorporating Si at oxygen vacancies in Al_2O_3 . We calculated the atomic and electronic structures of oxygen vacancies in amorphous $Al_{1-x}Si_xO_y$ using firstprinciples calculations.

The calculations were performed using the VASP code², which is based on densityfunctional theory with the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation.³ We prepared amorphous Al_2O_3 with 120 atoms and constructed $Al_{0.8}Si_{0.2}O_3$, $Al_{0.46}Si_{0.54}O_3$ and $Al_{0.23}Si_{0.77}O_3$ models. Next, we removed an oxygen atom and calculated the atomic and electronic structures. In Al_2O_3 , we found the well-known oxygen vacancy structures. However, a new Si-Si bond was formed in $Al_{0.8}Si_{0.2}O_3$, $Al_{0.46}Si_{0.54}O_3$ and $Al_{0.23}Si_{0.77}O_3$. As a result, no deep defect levels were formed in the bandgap with the $Al_{1-x}Si_xO_3$ mixed oxides, although deep defect levels originating from oxygen vacancies were formed in amorphous Al_2O_3 (Fig. 1 (a)-(d)). These results indicate that gate leakage would be reduced in MOSFETs with $Al_{1-x}Si_xO_y$ mixed oxides. Thus, $Al_{1-x}Si_xO_3$ is one of the best candidates for GaN-MOSFETs.

[1] D. Kikuta. Et al, J. Vac.Sci. Technol.A, Vol.35, No.1, 01B122 (2017).

- [2] G. Kresse, et al., Phys. Rev. B 59, 1758 (1999).
- [3] J. P. Perdew, et al., Phys. Rev. Lett. 77, 3865 (1996).

Figure 1: Band structures of $Al_{1-x}Si_xO_3$ mixed oxides with an oxygen vacancy, (a) Al_2O_3 , (b) $Al_{0.8}Si_{0.2}O_3$, (c) $Al_{0.46}Si_{0.54}O_3$ and (d) $Al_{0.23}Si_{0.77}O_3$. Author for correspondence: kojima@fluid.cse.nagoya-u.ac.jp