Interface-dependent Spin Transfer Torque at Ferromagnetic Topological-Insulator Contacts

Sarmita Majumder^a, Karen L Kavanagh^b, Sanjay K Banerjee^a

^aUniversity of Texas, Austin; ^bSimon Fraser University, Burnaby

In previous work, we have shown large magnetoresistances at room temperature (RT) for three Ferromagnet/Topological Insulator (FM/TI) devices (Fe/Bi₂Te₃-based devices with and without an evaporated SiO₂ oxide, and an Fe/Bi₂Se₃-based device without evaporated oxide) [1]. The observed magnetoresistance was substantially larger than previously reported for the same system at RT [2] and at low temperatures [3, 4], and was particularly enhanced when an evaporated SiO₂ layer was introduced between the Fe and Bi₂Te₃, and when Bi₂Se₃ was used instead of Bi₂Te₃. We have speculated that the Fe deposition directly onto the TI might form an Fe-rich FeTI compound [5] which might have been prevented in the case when an evaporated oxide was present between Fe and Bi₂Te₃.

In this presentation, we will show large interface-dependent magnetoresistances in these devices due to spin polarization of the Fe bar via electron injection and extraction from the TI to the Fe (STT) at 2 K. The required switching current for STT in our case is comparable to the previous results in [6] for Cr-TI/TI contacts. Moreover, to support our speculation regarding the interfacial dependencies, we have performed cross-sectional transmission electron microscopy (XTEM) at the FM/TI interfaces. Cross-sectional samples were prepared using focussed Ga-ion beam milling. Fig. 2 shows XTEM images from (a) Fe/Bi₂Se₃, and (b) Fe/SiO₂/Bi₂Te₃ interfaces. The Fe/Bi₂Se₃ interface shows an extra crystalline layer at the interface with a slightly larger half period of 0.53 nm compared to the Bi₂Se₃ fringes (1.02 nm/2 = 0.50 nm). Energy dispersive X-ray spectroscopy (EDX) profiling using scanning transmission electron microscopy (STEM) imaging across the interface confirmed the inclusion of Se into Fe. Fig. 1(b) shows an abrupt interface between the crystalline Bi₂Te₃ and evaporated SiO₂.

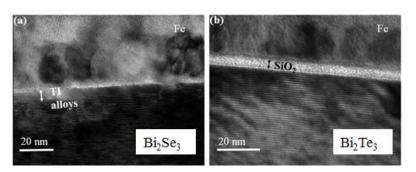


Fig. 2 Bright-field XTEM images (a) Fe directly deposited on TI (Bi₂Se₃) and (b) Fe/evaporated oxide (SiO₂)/TI (Bi₂Te₃). In (a) there is an unexpected 5 ± 1 nm interface layer present with a layered structure but with a slightly larger half-period (0.53 nm) compared to that of the substrate Bi₂Se₃ (1.02 nm). In (b) the Bi₃Te₂ (001) fringes (1 nm) are visible parallel to the surface and an expected oxide layer (5 nm thick) present between the Fe and Bi₃Te₂.

⁺ Author for correspondence: sarmita@utexas.edu

- 1. S. Majumder, S. Guchhait; R. Dey; L. F. Register; S. K. Banerjee, IEEE Tnano. 15 671 (2016).
- 2. A. Dankert, J. Geurs, M. V. Kamalakar, and S. P. Dash, *Nano Lett.* 15 7976 (2015).
- 3. C. H. Li, O. M. J. van't Erve, J. T. Robinson, Y. Liu, L. Li and B. T. Jonker, Nature Nanotech. 9 218 (2014).
- 4. J. Tang, L. T. Chang, X. Kou, K. Murata, E. S. Choi, M. Lang, Y. Fan, Y. Jiang, M. Montazeri, W. Jiang, Y. Wang, L. He and K. L. Wang, *Nano Lett.* **14** 5423 (2014).
- I. Vobornik, G. Panaccione, J. Fujii, Z. H. Zhu, F. Offi, B. R. Salles, F. Borgatti, P. Torelli, J. P. Rueff, D. Ceolin, A. Artioli, G. Levy, M. Marangolo, M. Eddrief, D. Krizmancic, H. Ji, A. Damascelli, G. van der Laan, R. G. Egdell and R. J. Cava, J. Phys. Chem. C 118 12333 (2014).
- 6. Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L. T. Chang, M. Montazeri, G. Yu, W. Jiang, T. Nie, R. N. Schwartz, Y. Tserkovnyak and K. L. Wang, *Nat. Mat.* **13** 699 (2014).