## CO<sub>2</sub> reduction with H<sub>2</sub>O over Ga<sub>2</sub>O<sub>3</sub> photocatalysts prepared at various calcination temperatures

M. Akatsuka,<sup>a</sup> T. Yoshida,<sup>b</sup> M. Yamamoto,<sup>a</sup> S. Ogawa,<sup>c</sup>, S. Yagi<sup>c</sup>

<sup>a</sup> Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan <sup>b</sup> Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka 558-8585, Japan

<sup>c</sup> Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan

Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) photocatalysts can reduce CO<sub>2</sub> with H<sub>2</sub>O to produce CO, although the reaction rate of CO production is very low. It has been reported that the loading of Ag on Ga<sub>2</sub>O<sub>3</sub> promoted CO production [1], on the other hand, improvement of Ga<sub>2</sub>O<sub>3</sub> structure should be also essential. In our previous work [2], Ga<sub>2</sub>O<sub>3</sub> loaded Al<sub>2</sub>O<sub>3</sub> samples (Ga<sub>2</sub>O<sub>3</sub>/ Al<sub>2</sub>O<sub>3</sub>) were prepared to change coordination structures around Ga atoms, and we succeeded to enhance CO production rate. Recently, we found that the photocatalytic activity of Ga<sub>2</sub>O<sub>3</sub> depended on the calcination temperature for a Ga<sub>2</sub>O<sub>3</sub> precursor in the preparation stage. Therefore, in this study, we will discuss the reason why the CO production was enhanced by controlling calcination temperature.

 $Ga_2O_3$  samples were prepared by calcination of  $Ga(NO_3)_3 \cdot 8H_2O$  powder in the air at given temperatures (673 - 1173 K) for 4 h. We carried out photocatalytic  $CO_2$  reduction with  $H_2O$ 

over the  $Ga_2O_3$  samples. Fig.1 shows CO production rate for each  $Ga_2O_3$  sample.  $Ga_2O_3$  prepared by calcination at 823 K ( $Ga_2O_3(823 \text{ K})$ ) showed a specifically high activity for CO production, although the H<sub>2</sub> production rate for this sample was comparable with those for  $Ga_2O_3$  (673, 773, 873 K). It was found that the H<sub>2</sub> production rate increases with the surface area of the sample.

In XRD measurement of Ga<sub>2</sub>O<sub>3</sub>(823 K), very weak and broad diffraction peaks were observed, suggesting the formation of low crystallinity  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>. Taking into account that a low crystallinity photocatalyst has many defects to promote the recombination of excited electron-hole pairs, high

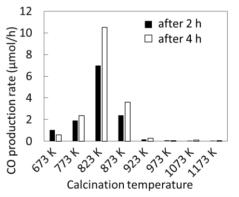



Fig. 1 CO production rates for Ga<sub>2</sub>O<sub>3</sub> samples prepared by calcination at different temperatures.

CO production activity for  $Ga_2O_3(823 \text{ K})$  would be resulted from an improvement of  $CO_2$  adsorption process rather than electrons and holes diffusion process. Therefore We performed FT-IR measurements for chemisorbed species on  $Ga_2O_3$  samples after introduction of  $CO_2$ . It was revealed that adsorbed species on  $Ga_2O_3(823 \text{ K})$  are different from those on other  $Ga_2O_3$  samples. The FT-IR spectrum of  $Ga_2O_3(823 \text{ K})$  indicated preferential formation of  $CO_2$  species interacting with water adsorbed on  $Ga_2O_3$  surface.

<sup>&</sup>lt;sup>+</sup> Author for correspondence: akatuska.masato@d.mbox.nagoya-u.ac.jp

<sup>[1]</sup> Yoshida H, Zhang L, Sato M, Morikawa T, Kajino T et al. Catal. Today 251, 132(2015).

<sup>[2]</sup> M. Akatsuka, T. Yoshida et al Catal. J. Phys. Conf. Ser., conference 1, 712, 012056 (2016).