Current State-of-the-Art of Gallium Oxide Power Device Technology

<u>M. Higashiwaki</u>,^a M. H. Wong,^a K. Konishi,^a K. Sasaki,^{b,a}, K. Goto,^{b,c}, R. Togashi,^c H. Murakami,^c Y. Kumagai,^c B. Monemar,^{c,d} A. Kuramata,^b and S. Yamakoshi^b

^a National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan

^b Tamura Corporation, Sayama, Saitama 350-1328, Japan ^c Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokvo 184-8588, Japan

^d Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping, Sweden

Recently, gallium oxide (Ga_2O_3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power devices by virtue of the excellent material properties and the relative ease of mass wafer production. Following a short introduction of material properties and features of Ga_2O_3 , this presentation will review our recent development progress in device processing and characterization of Ga_2O_3 metal-oxide-semiconductor field-effect transistors (MOSFETs) and Schottky barrier diodes (SBDs).

Ga₂O₃ MOSFETs were fabricated with unintentionally-doped (UID) Ga₂O₃ epitaxial layers grown on semi-insulating Fe-doped β -Ga₂O₃ (010) substrates by ozone molecular beam epitaxy [1]. Selective-area Si-ion implantation doping of the UID Ga₂O₃ epitaxial layer formed the device channel and ohmic contacts [2], while the high resistivity of UID Ga₂O₃ was utilized for planar device isolation without mesa etching. SiO₂-passivated depletion-mode MOSFETs with a gate-connected field plate (FP) demonstrated a high off-state breakdown voltage (V_{br}) of 755 V, a large drain current on/off ratio of over nine orders of magnitude, DC-RF dispersion-free output characteristics, and stable high temperature operation against thermal stress at 300°C.

We also fabricated and characterized Pt/Ga₂O₃ FP-SBDs on n⁻-Ga₂O₃ drift layers grown on n⁺-Ga₂O₃ (001) substrates [3], owing to the success of halide vapor phase epitaxy for high-speed growth of high-quality Ga₂O₃ thin films [4, 5]. The illustrative device with a net donor concentration of 1.8×10^{16} cm⁻³ exhibited a specific on-resistance of 5.1 mΩ·cm² and an ideality factor of 1.05 at room temperature. Successful FP engineering resulted in a high $V_{\rm br}$ of 1076 V. Note that this was the first demonstration of $V_{\rm br}$ of over 1 kV in any Ga₂O₃ power devices.

In summary, the FP-MOSFETs and FP-SBDs revealed excellent device characteristics and demonstrated great potential of Ga_2O_3 devices for power electronics applications.

This work was partially supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Next-generation power electronics" (funding agency: NEDO).

⁺ Author for correspondence: mhigashi@nict.go.jp

^[1] M. H. Wong *et al.*, IEEE Electron Device Lett **37**, 212 (2016), [2] K. Sasaki *et al.*, Appl. Phys. Express **6**, 086502 (2013), [3] K. Konishi *et al.*, 74th Device Research Conference IV-A.5, 2016, [4] K. Nomura *et al.*, J. Cryst. Growth **405**, 19 (2014), [5] H. Murakami *et al.*, Appl. Phys. Express **8**, 015503 (2015).