Study on photodeposition process of Pt nanoparticles on TiO₂ photocatalyst by XAFS spectroscopy

Y.Nakano,^a M.Akatsuka,^a M.Yamamoto,^a T.Tsukada,^b S.Ogawa,^a S.Yagi,^{a,b} T.Yshida^{a,c}

^a Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

^b Insitute of Materials and Systems for Sustainability, Nagoya 464-8603, Japan

^c Advance Research Institute for National Science and Technology, Osaka City University, Osaka 558-8585, Japan

 TiO_2 is one of the representative photocatalysts used, for example, to purify water and air. In order to enhance the activity of the TiO_2 photocatalyst, Pt nanoparticles are often deposited on the surface[1]. In this study, we aimed to investigate the photodeposition process of Pt nanoparticles on TiO_2 using Pt L₃-edge XAFS spectroscopy focusing on the bonding states of Pt on TiO_2 surface and local structures around Pt atoms.

Before irradiation, the feature of Pt L_3 -edge XANES spectrum of the TiO₂ sample adsorbing the Pt precursor was similar to that of PtO₂. The energy position of the main peak of XANES shifted to lower X-ray energy with the photoirradiation time, indicating a decrease in the ratio of Pt⁴⁺ ions by reduction.

All XANES spectra were reproduced with the linear combination of two XANES spectra of PtO_2 and Pt metal, and the fractions of Pt^{4+} and Pt^0 for all the Pt/TiO_2 samples were directly evaluated. Fig.1 shows irradiation-time dependence of edge jump intensity at 11740 eV and the fraction of Pt^0 . The edge jump intensity corresponds to the deposited Pt concentration.

Before photoirradiation, only 20% of Pt^{4+} ions were adsorbed on TiO₂. The Pt^{4+} ions increased to 45% by photo-assisted adsorption after 5 minutes, in which most of the adsorption sites of Pt on the TiO₂ surface would be occupied. Subsequently, the adsorbed Pt^{4+} ions were gradually reduced during the following 5 to 20 minutes of photoirradiation. In the successive period for 20–30 min, the amount of the adsorbed Pt^{4+} ions drastically increased and the reduction of Pt^{4+} to Pt^{0} drastically occurred. After that, the fraction of Pt^{0} gradually increased by further photoreduction.

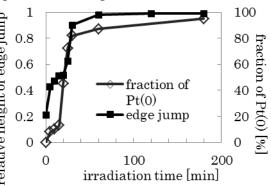


Fig.1 Dependence of relative height of edge jump in Pt L_3 edge XANES and fraction of Pt⁰ on the photoirradiation time.

⁺ Author for correspondence: nakano.yuuji@j.mbox.nagoya-u.ac.jp

^[1] G. R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, J. Photochem. Photobiol A. 89, 177(1995).