Epitaxial Stabilization of Monoclinic Fe₂O₃ on β-Ga₂O₃

John S. Jamison¹, Brelon J. May¹, Roberto C. Myers^{1,2}

¹Materials Science and Engineering, The Ohio State University, Columbus, OH ²Electrical and Computer Engineering, The Ohio State University, Columbus, OH

There is a surge in interest in β -Ga₂O₃ because of its thermodynamic stability, wide bandgap, and excellent figures of merit for high power devices. Additionally, β -Ga₂O₃ is quite similar to structures found in magnetic 3d transition metal oxides, which also consist of networks of tetrahedra and octahedra. Specifically, there are several naturally occurring Fe₂O₃ phases, and Fe³⁺ and Ga³⁺ cations exhibit similar ionic radii. However, there are no Fe₂O₃ phases the same monoclinic structure as β -Ga₂O₃. Here, we investigate the possibility of using epitaxial strain to stabilize a new form of monoclinic Fe₂O₃ (μ -Fe₂O₃) on β -Ga₂O₃. Molecular beam epitaxy was used to grow a sample on a (010) β -Ga₂O₃ substrate, consisting of multiple Fe depositions of increasing amounts separated by 10 nm β -Ga₂O₃ spacers (Fig. 1(a)). Reflection high energy electron diffraction (RHEED) shows the preservation of the β -Ga₂O₃ overgrowth quality even for quite high μ -Fe₂O₃ thicknesses. High resolution X-ray diffraction of the structure shows distinct thickness fringes and superlattice peaks. High resolution scanning transmission electron microscopy confirms that the overgrown β -Ga₂O₃ reamins high quality after multiple Fe containing layers. The high Fe regions also show the same crystal structure as β -Ga₂O₃, i.e. μ -Fe₂O₃. The optical and magnetic properties of this new form of Fe₂O₃ will also be discussed.

Figure 1: (a) Schematic of superlattice structure with increasing Fe deposition (yellow) between 10 nm β -Ga₂O₃ spacers (purple). (b) HR-STEM image of resulting structure and (c) atomic-resolution image of the of interface between Fe₂O₃ and β -Ga₂O₃.

Figure 2: HR-XRD of β -Ga₂O₃ substrate (black) and the Fe₂O₃ / β -Ga₂O₃ superlattice structure (red) showing distinct superlattice fringes.