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Photonic integrated circuits for the extended short and mid-wave infrared (eS-MWIR)
wavelength regime are crucial for potential applications including on-chip chemical and
biological sensing and non-invasive medical diagnosis. The lack of high-performance lasers
on an SOI wafer and material limitations in InP necessitate an alternative material system. A
monolithic platform based on GaSb addresses these concerns through the tight integration of
both passive and active components since it is an optimal material system for realizing long-
wavelength lasers and photodetectors. In this work, we modeled and optimized various
fabrication-compatible passive components including 1x2 power splitters/combiners based
on directional coupler (DC), multimode interferometer (MMI), and Y-branch as well as a
grating coupler on GaSb substrates at 2.56 pum.

Surface ridge waveguides designed on GaSh-based epitaxial layers are schematically shown
in Figure 1(a). Figure 1(b) shows the effective refractive indices nefr, of a few lowest-order
guided modes as a function of the ridge width W, and the inset shows the mode profile of
TEo at W = 4 um. Figure 1(c) shows the transmission through the two output ports of DC-,
MMI-, and Y-branch- splitters with 1-dB bandwidth, AA ~ 1 um at a center wavelength of
2.56 um. For all the splitters, we achieve 50:50 power splitting with an excess loss lower than
0.12 dB. For the grating coupler, a coupling efficiency of -5.4 dB and a 3-dB bandwidth of
80 nm are achieved at 2.56 um. Details of the design and simulation results of all these
passive photonic devices will be presented at the conference.
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Figure 1. (a) Schematic cross-section of the GaSb-based single-mode surface ridge waveguide, (b)
mode effective index as a function of waveguide width, W. Inset: fundamental TE; mode at 2.56 um,
and (c) transmission through the two output ports of DC (black), MMI (blue), and Y-branch (red) at
a center wavelength of 2.56 um.
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Figure 1(b): Up to a width of 2.4 um, the waveguide supports only single TE modes.
However, in experiments, devices with wider widths are found to emit a single fundamental
mode. The first higher-order odd mode TE: in a laser cavity receives very little gain due to a
null at the waveguide center and is not usually considered while defining the single-mode
waveguide cut-off condition [1]. TM modes were also not considered since the 111-V laser
structure employs compressively strained quantum wells which favor only TE-polarized
light. Thus, the calculated ridge width supporting single mode is 4.4 pm, as represented by
the vertical dashed line.
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