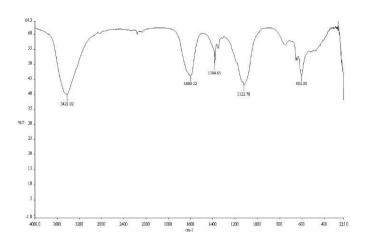
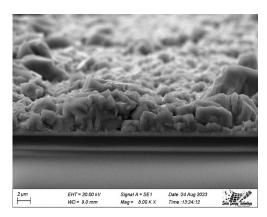
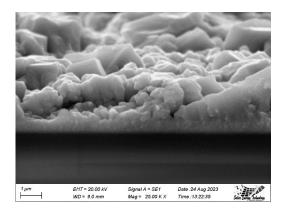

Ethylene Glycol Electrolyte-Based Electrodeposition and Characterization of Nanostructured Earth-Abundant Metal Oxides on FTO Substrate

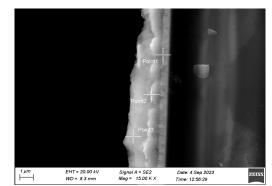

Electrodeposition method for Cu_xO-ZnO heterustructure:

The nanostructure ZnO-Cu_xO heterustructure films were fabricated employing by electrochemical deposition method on precleaned fluorine-doped tin oxide (FTO) coated glass substrate. Three-electrode cell system (Admiral Instruments Squidstat Plus Potentiostat operate by Squidstat User Interface (SUI)) has been adopted; FTO was utilized as working electrodes (WE), a Pt grid as counter electrode (CE) and a silver/silver chloride (Ag/AgCl) as reference (RE). The cell was contacted with an 0.3 M acetate solution (zinc acetate, or copper acetate) and 0.2 M Sodium acetate trihydrate, dissolved in 40 ml ethylene glycol at fixed pH (4.68 for ZnO, 5.68 for Cu_xO). The bath temperature was maintained at 70°C. Deposition potential of -1.325 V for ZnO and -0.63 V for Cu_xO were applied and controlled by in-situ Cyclic Voltammetry (C-V) observation. Electrodeposition was executed for varying period of 2min, 5min, 10 min for both of ZnO and Cu_xO films. For ZnO/Cu_xO heterostructure films, two methodologies were employed: (i) separate electrodeposition of ZnO and Cu_xO from distinct electrolyte solutions of 0.3M zinc acetate, 0.3M copper acetate, and 0.2M sodium acetate trihydrate, while (ii) simultaneous deposition performed from a common buffer solution containing both precursors. The overall process was executed under computer program controlled in-situ cyclic voltammetry observations.


Structural analysis and deposition rate of ZnO and CuO films on FTO substrate:



Deposition rate of (a) Cu_xO and (b) ZnO thin films, both were deposited on transparent FTO substrate.



FTIR spectrum of electrodeposited bulk FTO/Cu_xO-ZnO heterojunction films from a common Zn-acetate and Cuacetate precursors containing buffer solution.

SEM images of electrodeposited FTO/Cu_xO-ZnO heterojunction films from binary electrolytic (Zn-acetate and Cuacetate) precursors solution.

Crossectional image of the formation of Cu_xO-ZnO heterostructure

A sustainable and efficient acetate-derived electrodeposition method for the scalable synthesis of ZnO and Cu_xO and their heterostructures has been studied and analyzed systematically. The structural and compositional integrity, as evidenced by XRD, EDS, FTIR, and SEM analyses, ensures superior optoelectronic properties, making these heterojunctions a compelling candidate for both energy harvesting and photocatalytic applications.