Effect of MoS₂ additive on corrosion and tribocorrosion property of plasma electrolytic oxidation coating on titanium

Neng-Kun Zheng^{1, 2}, Chun-Wei Chang¹, Chaur-Jeng Wang² and Chuan-Ming Tseng^{1, 3}*

¹ Department of Materials Engineering, Ming Chi University of Technology, Taiwan
² Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan
³ Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, Taiwan

*cmtseng@mail.mcut.edu.tw

ABSTRACT

Plasma electrolytic oxidation (PEO) technology as a novel and attractive surface engineering process has been widely used for preparation of functional oxide coatings on light alloys such as aluminum, magnesium, zirconium, and titanium. In this study, we fabricated the MoS₂ decorated composite oxide layers on pure titanium by using PEO treatment under pulsed DC power with unipolar mode in alkaline phosphate- and aluminate-based solutions with 0~3 g/L MoS₂ nanoparticle additions. The influence of MoS₂ nanoparticle addition on the microstructure, mechanical property, corrosion resistance and tribocorrosion behavior of PEO composite coating on pure titanium was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), field-emission electron probe microanalysis (FE-EPMA), surface profilometry (α -step), scratch adhesion testing, pin-on-disc wear testing and potentiodynamic polarization measurement in 3.5 wt% NaCl solution. The experimental results obtained from scratch adhesion testing and potentiodynamic polarization measurements show that PEO composite coating with 2.5 g/L MoS₂ nanoparticles addition exhibits optimal adhesion strength and corrosion resistance. Furthermore, the results of XRD and SEM-EDS indicate that regardless of the presence or absence of MoS₂ nanoparticle additives, the PEO composite coatings on pure titanium are primarily composed of aluminum titanate (Al₂TiO₅) and rutile-phase titanium dioxide (TiO₂). The FE-EPMA data reveal that MoS₂ particles are mainly well distributed at the interface between the PEO coating and pure titanium substrate. The tribocorrosion behavior of MoS₂ nanoparticle decorated PEO composite coatings was carried out by potentiodynamic polarization measurement in 3.5 wt% NaCl solution under wear mode. As similar to static potentiodynamic polarization measurement, the PEO composite coating with 2.5 g/L MoS₂ nanoparticles addition also displays optimal tribocorrosion resistance in this study. In summary, the adhesion strength, wear resistance and corrosion/tribocorrosion resistance of Al₂TiO₅-rutile TiO₂ composite coating on pure titanium can be improved by increasing MoS₂ nanoparticles addition. The optimal concentration of MoS₂ additive is 2.5 g/L.

Keywords: plasma electrolytic oxidation (PEO), MoS₂, corrosion, tribocorrosion, titanium

Sample		#M0	#M1	#M2	#M3	#M4
Electrolyte Concentration -g/L-	NaAlO ₂	3				
	$Na_3PO_4 \cdot 12H_2O$	10				
	KOH	1				
	MoS ₂	0	1.5	2	2.5	3
	SLS	0	1	1	1	1
Duty cycle (%)				50		
Frequency (Hz)		1000				
Current setting (A)		4				
maxima working voltage (V)		0~450				
Processing time (min)				10		

Fig. 1. The voltage-time curves recorded during PEO process with various concentrations of MoS₂ additives.

Fig. 2. surface morphology (a-e) and cross-sectional (f-j) SEM images of PEO composite coatings on titanium with various concentrations of MoS_2 additives: (a) M0 (0 g/L); (b) M1 (1.5 g/L); (c) M2 (2.0 g/L); (d) M3 (2.5 g/L); (e) M4 (3.0 g/L); and cross-sectional images of (f) M0 (0 g/L); (g) M1 (1.5 g/L); (h) M2 (2.0 g/L); (i) M3 (2.5 g/L); and (j) M4 (3.0 g/L).

Fig. 3. Cross-sectional EPMA mapping images of PEO composite coatings on titanium with 2.5 g/L of MoS₂ additives (M3).

Fig. 4. OM images captured after scratch testing for PEO composite coatings on titanium with various concentrations of MoS₂ additives.

Fig. 5. Potentiodynamic polarization curves (tribocorrosion) for PEO composite coatings on titanium with various concentrations of MoS₂ additives.