Descriptors Development for Stability Prediction of N-Doped High Entropy Alloy Coatings: A DFT Study

Chih-Heng Lee¹, Jyh-Wei Lee^{2,3,4,5}, <u>Hsin-Yi Tiffany Chen^{1,6*}</u>

^{1*}Department of Engineering and System Science, National Tsing Hua University, Taiwan 300044
 ²Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan 24301
 ³Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan 24301

⁴Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan 33301

⁵High Entropy Materials Center, National Tsing Hua University, Taiwan 300044

⁶College of Semiconductor Research, National Tsing Hua University, Taiwan 300044

Email (corresponding author): hsinyi.tiffany.chen@gapp.nthu.edu.tw

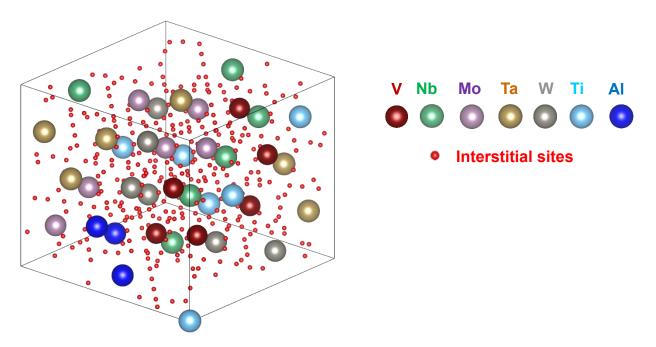


Figure 1: Illustration of a 39-atom HEA (BCC) unit cell, composed of 351 possible interstitial sites, indicating that it is time-consuming to search for a stable and representative N-doped HEA model