The photodetection of the In-, Sn-, and Te-doped Bi₂Se₃ nanoplatelets

Chih-Chiang Wang¹, Han-Chang Shih^{2,3}, Fuh-Sheng Shieu², An-Ya Lo¹

¹ Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan

² Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan

³ Department of Chemical Engineering and Materials Science, Chinese Culture University, Taipei 11114, Taiwan

Abstract

The compound Bi_2Se_3 has a narrow band gap of 0.35eV with a rhombohedral crystal structure and is a unique material with the gapless surface-state and the insulating bulk. It is a potential material in the application of photodetection, FET, quantum computation, etc. Bi_2Se_3 has the layered structure composing of 5-atomic layers of Se^1 -Bi-Se²-Bi-Se¹ known as a quintuple layer (QL) with a thickness of around 1 nm. The main bonding type inside the QL is the covalent bonds, and the van der Waals force dominates the bonding between the QLs.

In this investigation, the pure Bi₂Se₃, and In-, Sn-, and Te-doped Bi₂Se₃ nanoplatelets (NPs) were synthesized by the thermal CVD process using horizontal quartz tube at 600°C under the pressure of 2×10^{-2} Torr, using sapphire as the substrate. The FESEM images show the hexagonal-like morphologies of the NPs. The results of XRD, HRTEM, Raman, and XPS confirm the typical rhombohedral Bi₂Se₃. The photodetection of the pristine Bi₂Se₃ NPs shows that the photocurrent and the ratio of photocurrent/dark- current under UV-and under red-light are of the 4×10^{-11} and 23.8×10^{-14} A and 7.7 and 1, respectively, while the co-dopants of In and Sn enhance the photocurrent as well as the ratio of photocurrent/dark-current of the Bi₂Se₃ NPs under UV-and under red-light up to 52×10^{-11} and 3.5×10^{-11} A and 30.7 and 52.2, respectively. The proposed factors can be summarized as the following: (1) formation of the donor defects $(In^{3+}_{V^0})$ and $(Sn^{4+}_{Bi^{3+}})$, the acceptor defects $(V^0_{Bi^{3+}})$ and $(Sn^{2+}_{Bi^{3+}})$, and the neutral defect $(In^{3+}_{Bi^{3+}})$, (2) the reduced optical band gap of the doped Bi₂Se₃ NPs, and (3) the similar melting point of the powder precursors.

- [1] C. C. Wang, Investigations on the fabrication, structure, photocatalytic and optoelectronic properties of metal oxide (ZnO) and topological insulator (Bi₂Se₃) nanostructures, PhD thesis 2021, National Chung Hsing University, Taichung, Taiwan.
- [2] C. C. Wang F. S. Shieu, H. C. Shih, Photosensing and Characterizing of the Pristine and In-, Sn-Doped Bi₂Se₃ Nanoplatelets Fabricated by Thermal V–S Process, Nanomaterials 2021, 11, 1352.