Characterization and photoluminescence of Al- and Ga-doped V₂O₅ nanostructures synthesized by thermally activated process

Chih-Chiang Wang^a, Chia-Lun Lu^b, Fuh-Sheng Shieu^a, Han C. Shih^{a,b}

^a Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan

^b Department of Chemical Engineering and Materials Science, Chinese Culture University, Taipei 11114, Taiwan

Abstract

V₂O₅ has an orthorhombic crystal structure, and narrow direct and indirect bandgaps of 2.4 and 2.0 eV. Its optoelectronic properties can be modified by adding various dopants, such as Ga, Al, and Nd, due to the formation of the defect-levels. The applications of V_2O_5 are widely used in gas sensors, catalysts, and electrochromic devices. In this study, Al- and Ga-doped V₂O₅ nanostructures were fabricated by the thermally activated process at 850°C via the V-S mechanism. The Raman and XRD patterns have showed the typical V₂O₅ orthorhombic crystal structures of Al- and Ga-doped V₂O₅. The variations of c/a and c/b ratios estimated from the XRD patterns confirmed the substitutions of the Al^{3+} and Ga^{3+} into the V^{5+} lattice sites. HRTEM images showed that the growth direction of Al- and Ga-doped V₂O₅ nanostructures were along the [110] direction. The XPS results for the Al-doped V2O5, metallic Al was formed inside the nanostructure and the amorphous Al-O and Al-OH phases were generated on the nanostructure surface; for the Ga-doped V₂O₅, Ga-O phase was formed in the V₂O₅ nanostructures. PL spectra showed the increasing intensities in blue (1.94 eV) and green (1.77 eV) emissions of the V₂O₅ nanostructures while the Ga dopant was in 0.5 wt.%, which can be contributed to the formation of $V_{0^{2-}}$ and Ga^{3+}_{i} -defects; the Al dopant showed a decreasing intensities in blue (1.94 eV) and green (1.77 eV) emissions of the V₂O₅ while the adding of Al, which can be attributed to the formation of the metallic Al inside the V₂O₅ nanostructures. This study showed that the photoluminescence properties of V_2O_5 nanostructures can be modified by the dopants of Al and Ga. The Al dopants revealed a significantly suppressing effect while starting the addition of Al, and the Ga showed an enhancing effect while the Ga contents were in 0.5 wt.%.

References

Chih-Chiang Wang, Chia-Lun Lu, Fuh-Sheng Shieu, Han C. Shih, Enhanced photoluminescence properties of Ga-doped V₂O₅ nanorods *via* defect structures, Chem. Phys. Lett. 738 (2020) 136864.

Chih-Chiang Wang, Kang-Chi Chen, Fuh-Sheng Shieu, Han C. Shih, Characterization and photoluminescence of $V_2O_5@Pt$ core-shell nanostructures as fabricated by atomic layer deposition, Chem. Phys. Lett. 729 (2019) 24-29.