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10:45am EP+ET+MD-WeM-10 Recent Progress of Ga2O3 Power 
Technology: Large-Area Devices, Packaging, and Applications, Yuhao 
Zhang, Virginia Tech INVITED 

The Ga2O3 power device technology has witnessed fast advances towards 
power electronics applications. Recently, reports on large-area (ampere-
class) Ga2O3 power devices have emerged globally, and their scope has 
gone well beyond the bare-die device demonstration into the device 
packaging, circuit testing, and ruggedness evaluation. These results have 
placed Ga2O3 in a unique position as the only ultra-wide bandgap 
semiconductor reaching these indispensable milestones for power device 
development. This talk will review the state of the art of the ampere-class 
Ga2O3 power devices (current up to >100 A and voltage up to >2000 V), 
covering the following topics: 

  

1. Static electrical performance of Ga2O3 diodes and MOSFETs with 
ampere-class demonstrations (Fig. 1), with a summary of their 
key parameters including breakdown voltage, on-state current, 
and specific on-resistance (Fig. 2).  

2. Dynamic performance of large-area Ga2O3 diodes and MOSFETs, 
including the reverse recovery, switching charge, as well as turn-
ON and turn-OFF characteristics. A large-area Ga2O3 diode with 
NiO junction termination extension will be analyzed as a case 
study (Fig. 3).  

3. Packaging and thermal management of Ga2O3 devices, 
highlighting the global efforts on junction-side packaging and 
cooling to overcome the low thermal conductivity of Ga2O3 (Fig. 
4).  

4. Circuit-level applications of Ga2O3 power devices, such as PFC 
circuits and double-pulse tests, as well as their circuit-level 
overcurrent/overvoltage ruggedness. 

  

These results of large-area Ga2O3 devices allow for a direct comparison with 
commercial Si, SiC, and GaN devices. Accordingly, research opportunities 
and critical gaps for Ga2O3 power devices will also be discussed. 

Reference: 

[1] Y. Qin et al. , “Recent progress of Ga2O3 power technology: large-area 
devices, packaging and applications,” Jpn. J. Appl. Phys., vol. 62, no. SF, p. 
SF0801, Feb. 2023. 

[2] Y. Qin et al., “Thermal management and packaging of wide and ultra-
wide bandgap power devices: a review and perspective,” J. Phys. Appl. 
Phys., vol. 56, no. 9, p. 093001, Feb. 2023. 

[3] B. Wang et al., “2.5 kV Vertical Ga2O3 Schottky Rectifier With Graded 
Junction Termination Extension,” IEEE Electron Device Lett., vol. 44, no. 2, 
pp. 221–224, Feb. 2023. 

[4] B. Wang et al., “Low Thermal Resistance (0.5 K/W) Ga₂O₃ Schottky 
Rectifiers With Double-Side Packaging,” IEEE Electron Device Lett., vol. 42, 
no. 8, pp. 1132–1135, Aug. 2021. 

[5] M. Xiao et al., “Packaged Ga2O3 Schottky Rectifiers With Over 60-A 
Surge Current Capability,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 
8565–8569, Aug. 2021. 

11:15am EP+ET+MD-WeM-12 Forward and Reverse Current Transport of 
(001) β-Ga2O3 Schottky Barrier Diodes and TiO2/β-Ga2O3 Heterojunction 
Diodes with Various Schottky Metals, Nolan Hendricks, AFRL, UCSB; E. 
Farzana, UCSB; A. Islam, D. Dryden, J. Williams, Air Force Research Lab; J. 
Speck, UCSB; A. Green, Air Force Research Lab 

β-Ga2O3 (BGO) has great potential for power devices due to its predicted 
breakdown field of 8 MV/cm, ease of n-type doping, and availability of 
melt-grown native substrates. The TiO2/BGO heterojunction diode (HJD) 
has been shown to reduce reverse current compared to Schottky barrier 
diodes (SBDs) due to the high permittivity of TiO2 without significantly 
affecting forward conduction losses due to the band alignment. [1] We 
demonstrate SBDs and HJDs with Ni, Pt, Cr, and Ti contacts, analyzing the 
current transport mechanism and showing similar or lower conduction 
losses in the HJD for all metals and reduced leakage current at higher 

electric fields in reverse bias. 
 
SBDs and HJDs were fabricated on 8.5 μm of Si-doped BGO grown by HVPE 
on a Sn-doped (001) BGO substrate. Fabrication began with a backside 
Ti/Au cathode. 6.5 nm of TiO2 was deposited on the HJD sample by plasma-
enhanced ALD. Circular anode contacts (D=150 μm) of Pt/Au, Ni/Au, Cr/Au, 
and Ti/Au (20/180 nm) were patterned by separate lithography steps. 
 
Capacitance-voltage (C-V) behavior was measured at 1 MHz. ND-NA and ΦB 
were extracted from 1/C2. Current-voltage-temperature (J-V-T) 
characteristics of each device were measured, and Richardson plots were 
created from fitting the exponential region of each curve. ΦB and the 
Richardson constant (A*) were extracted from each plot. ΦB extracted for 
HJD is lower than in the SBD for Ni and Pt, while it is slightly higher for Cr. 
Unlike the Ti SBD, the Ti HJD showed rectifying behavior and exponential J-
V in forward bias. ΦB from C-V was similar but lower than J-V-T. In the 
linear-scale forward J-V characteristics at 25 °C, the lower ΦB leads to lower 
Von. No meaningful change in differential Ron,sp is seen. 
 
The reverse J-V behavior of each device at 25 °C was measured up to 
breakdown. To compare devices with different doping, JR is plotted against 
the average electric field (E) at the BGO surface. In all cases, the HJDs saw 
higher Ebk than the corresponding SBDs. At lower field, the leakage current 
is higher in devices with lower ΦB as expected from thermionic emission. 
However, at higher field, the leakage current is lower in all HJDs than the 
corresponding SBDs, indicating suppression of thermionic field emission 
current due to the wider energy barrier in the HJD. More detailed analysis 
indicating TFE as the primary leakage mechanism will be shown. Sharp 
increases in reverse current associated with defect-mediated soft 
breakdown are not observed for the HJDs. The reduced forward and 
reverse losses with higher Vbk of the TiO2/BGO HJD demonstrate its 
potential to unlock the benefits of BGO in power diodes. 
 

11:30am EP+ET+MD-WeM-13 Vertical β-Ga2O3 Diodes with 
PtOx/Interlayer Pt Schottky Contact and High Permittivity Dielectric Field 
Plate for Low Loss and High Breakdown Voltage, Esmat Farzana, S. Roy, S. 
Krishnamoorthy, J. Speck, University of California  Santa Barbara 

β-Ga2O3 is promising for high-power devices due to a bandgap of 4.8 eV, 
high breakdown field of 8 MV/cm, melt-grown substrates and shallow 
donors. However, the breakdown of β-Ga2O3 Schottky barrier diode (SBD) is 
often dictated by tunneling leakage through metal Schottky contacts with a 
limited Schottky barrier height (SBH) of 1.5 eV. Although oxidized noble 
metals (e.g, PtOx) with SBH>2 eV can reduce tunneling leakage and improve 
breakdown voltage, the trade-off comes with increased on-state loss. Here, 
we report an alternative scheme of composite Schottky contact, 

PtOx/Interlayer Pt, as a solution of reducing leakage but minimizing turn-on 
loss compared to PtOx. As shown with vertical GaN SBDs,1 the sputtered 
PtOx with an interlayer e-beam deposited Pt, can reduce leakage, increase 
breakdown voltage, while enabling low turn-on voltage. Moreover, for edge 
leakage management, we integrated high permittivity ZrO2 field-plate in 
these SBDs. 

The SBDs were fabricated on halide vapor phase epitaxy (HVPE) (001) β-
Ga2O3 of 10 µm epitaxy (doping ~1×1016 cm-3). Three different Schottky 
contacts were fabricated, Pt, PtOx (24 nm)/Interlayer Pt (1.5 nm), and PtOx 
(24 nm). The PtOx/Interlayer Pt SBDs were also investigated with a field-
plate dielectric of 100 nm ZrO2 (dielectric constant~26) on top of a 11 nm 
Al2O3 formed by atomic layer deposition (ALD) to protect the surface from 
sputtering-induced damage. 

In bare SBDs, the forward current density-voltage (J-V) provided near unity 
ideality factor and SBHs of Pt (1.1 eV), PtOx/Interlayer Pt (1.49 eV) and PtOx 
(1.90 eV). The 1/C2-V provided similar trend of SBH with Pt (1.48 eV), 
PtOx/Interlayer Pt (1.92 eV) and PtOx (2.28 eV). Thus, the interlayer Pt 
allows tuning of SBH to lower values than PtOx, leading to lower turn-on 
loss. All SBDs showed punchthrough breakdown where the fully depleted 
condition is reached at -910 V (estimated). The bare PtOx/Interlayer Pt SBDs 
showed lower leakage and higher breakdown voltage (Vbr) of 1.76 kV 
compared to Pt with 1.32 kV. The ZrO2 field-plate further increased Vbr to 
2.34 kV. With a minimum on-resistance of 8 mΩ-cm2 , the Baliga’s figure-of-
merit (BFOM) of the field-plate SBD was obtained as 0.684 GW/cm2. 
SILVACO simulation showed a parallel plane peak field of 3.25 MV/cm at 
anode center, peak field of 8 MV/cm at edge in β-Ga2O3, and 8.86 MV/cm in 
Al2O3. The barrier height engineering and field management involving 
processing techniques with reduced or minimal material damage presented 
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here is promising for realizing robust high performance β-Ga2O3 vertical 
power devices. 

[1] Z. Shi et al., Semi. Sci. Tech. 37, 065010 (2022). 

11:45am EP+ET+MD-WeM-14 Ni/TiO2/β-Ga2O3 Heterojunction Diodes 
with NiO Guard Ring Simultaneously Increasing Breakdown Voltage and 
Reducing Turn-on Voltage, J. Williams, N. Hendricks, Air Force Research 
Lab; Weisong Wang, Wright State University; A. Adams, Apex Micro 
Devices; J. Piel, D. Dryden, K. Liddy, Air Force Research Lab; N. Sepelak, KBR 
Inc.; B. Morell, Cornell University; A. Miesle, University of Dayton; A. Islam, 
A. Green, Air Force Research Lab 

β-Ga2O3 is an ultra-wide bandgap semiconductor (~4.8 eV) with numerous 
merits that potentially surpass the material limits other semiconductors for 
power electronic applications, namely a high predicted critical field strength 
of 8 MV/cm. Vertical Schottky barrier diodes (SBD) are a fundamental 
application for β-Ga2O3 to demonstrate power handling capabilities. 
However, breakdown behavior is limited by electric field crowding at the 
contact edge and high tunneling current under large reverse bias. We are 
reporting a novel integration of vertical heterojunction diode based on 
Ni/TiO2/β-Ga2O3 with p-type NiO as the guard ring (GR). The heterojunction 
improves off-state losses and breakdown voltage (Vbk) without adding 
significant on-state losses. Leakage current is reduced by the additional 
barrier width, but the negative conduction-band offset between TiO2 and β-
Ga2O3 maintains low Von. P-type NiO guard ring is to surround 
heterojunction to screen the high electric field generated at this region. 

The devices were fabricated on an 8.5 µm Si-doped β-Ga2O3 drift region 
grown by HVPE on a heavily Sn doped (001) substrate. A back-side Ohmic 
contact was formed by evaporated Ti/Au. The NiO GR was created by 
sputtering and lift-off. A thin TiO2 layer (42 Å) by ALD was shaped to overlap 
the anode. The Ni/Au anode was deposited before mesa was etched to 
provide edge termination to the SBD and HJD. The devices have circular 
contacts (D=100 µm) with an additional 5 µm GR. SBDs were co-fabricated 
on the same substrate as references. HJD showed a lower Von (0.8 V) than 
the SBD (1.1 V) from linear extrapolation of the J-V curve. Temperature 
dependent I-V behavior was measured from 25 ºC to 200 ºC. Both device 
types show excellent fits to the thermionic emission model, and barrier 
heights of 0.6 eV and 1.2 eV were fit for the HJD and SBD respectively. The 
HJD had higher Vbk of 1190 V compared to the SBD (685 V), and the GR HJD 
saw even further improvement with Vbk of 1777 V (826 V for GR SBD). The 
BFOM (Vbk

2/Ron,sp) of 518 MW/cm2for the GR HJD is competitive with other 
literature results. 

This work demonstrates an average breakdown field beyond the material 
limits of SiC and GaN in a device that has even lower conduction losses than 
the co-fabricated SBD. Lowering Von while raising Vbk simultaneously 
improves both on- and off-state parameters that are typically in 
competition with each other. With further optimized field management, the 
Ni/TiO2/β-Ga2O3HJD presents a path to realistically utilizing the high critical 
field of Ga2O3 without large forward conduction losses from a high-barrier 
junction. 

12:00pm EP+ET+MD-WeM-15 Fabrication of Self Aligned β-Ga2O3 Junction 
Barrier Schottky Diodes with NiO Field Termination, Joseph Spencer, Naval 
Research Laboratory; B. Wang, M. Xiao, Virginia Tech; A. Jacobs, T. 
Anderson, K. Hobart, Naval Research Laboratory; Y. Zhang, Virginia Tech; M. 
Tadjer, Naval Research Laboratory 

While the ultra-wide bandgap (4.8 eV) and the high critical field (6-8 
MV/cm) of Ga2O3 is promising, the lack of shallow acceptors and the self-
trapping of holes prevents this material from being doped p-type. The lack 
of complementary conductivity limits the practical device and termination 
structures for Ga2O3. Without the availability of p-type Ga2O3, Ga2O3 power 
devices must rely on a heterojunction for forming critically-important pn 
junctions. The naturally p-type nickel oxide (NiO, 3.6-4.5 eV [1]) forms a 
heterojunction with Ga2O3 and has been used to demonstrate Ga2O3 JBS 
diodes [2, 3]. 

In this work we have developed a self-aligned JBS diode fabrication process 
at 1 µm resolution that is capable of withstanding high-temperature 
thermal and chemical treatments such as annealing and relevant 
plasma/acid etches for Ga2O3 (e.g., BCl3, HCl, H3PO4). This novel dry lift-off 
process incorporates a XeF2 etch for undercut and lift-off steps producing a 
self-aligned process enabling fine device features without misalignment. A 
tri-layer mask consisting of, in order of deposition, amorphous Silicon (a-Si), 
SiO2, and Ni, allow for the dry etching of the Ga2O3 epilayer prior to NiO 
self-aligned deposition. The Ni, SiO2, and a-Si layers were patterned using 
Transene Ni-etchant, CF4-plasma, and a SF6-plasma dry etching, 
respectively. Subsequently, a ~250 nm deep trench in the Ga2O3 epilayer 

was etched via BCl3 plasma, and a post-dry etch clean in warm (80 °C) 
H3PO4 was performed for 10 minutes, wherein the Ni hard mask was also 
removed. The a-Si mask layer was undercut using a 1” burst of dilute XeF2 in 
a Xactix XeF2 etcher. P-type NiO with 10% O2 was sputtered (200 W, 12.5 
mTorr) in the trench regions, followed by a dry lift-off of the remaining 
mask (a-Si/SiO2) in XeF2 gas by selective undercutting of the a-Si layer. At 
the conclusion of this self-aligned process, a tri-layer NiO junction 
termination extension (JTE) region was deposited around the anode 
perimeter in order to facilitate electric field spreading and improve VBR [4]. 
Ni/Au anode was deposited atop the JBS region and the inner portions of 
the NiO JTE to conclude device fabrication (Figs. 1-4). Current-voltage 
characteristics in forward and reverse bias are shown in Figs. 5-6, 
respectively. This novel self-aligned process as shown by the fabrication of 
Ga2O3 NiOJBS diode serves to advance Ga2O3 heterojunction device 
technology and fabrication capabilities. 

12:15pm EP+ET+MD-WeM-16 Ni/BaTiO3/β-Ga2O3 Solar-Blind UV 
Photodetectors with Deep Etch Edge Termination, Nathan Wriedt, S. 
Rajan, Ohio State University 

We report on the design and demonstration Ni/BaTiO3/β-Ga2O3 
photodetectors, where high-permittivity BaTiO3 is introduced to enable 
high fields approaching the material (avalanche breakdown) limit. β-Ga2O3 

has a bandgap of 4.8eV and a corresponding photon absorption edge at 
270-280nm, making it a prime candidate for utilization in solar blind UV 
photodetectors applications. Furthermore, the excellent material quality 
and low doping densities achievable through epitaxy on bulk-grown 
substrates can enable extremely low dark currents. Schottky diodes suffer 
breakdown well before the 8 MV/cm material limit. However, inserting the 
extreme-k BaTiO3 dielectric between the metal and β-Ga2O3 prevents 
tunneling breakdown of the metal-semiconductor interface, and has been 
shown to support extremely high breakdown fields in β-Ga2O3 [1].When 
high electric fields occur in the β-Ga2O3 the electric field in the BaTiO3 is low 
due to the relative permittivity, thus maintaining a tunneling barrier. 
Additionally, the valence band offset between the BaTiO3 and Ga2O3 
presents no barrier to transport of holes. Device were fabricated using 
(001)-oriented HVPE-grown Ga2O3 films (10-µm, Nd=1x1016 cm-3) on Sn-
doped Ga2O3 bulk substrates. The device structure investigated consisted of 
1000 μm diameter circular mesas where the epitaxial layer was etched 
using a BCl3/Cl2-based ICP-RIE process to produce 0, 3, and 6-um pillars that 
have been shown to be effective in achieving high junction termination 
efficiency [2]. 10 nm BaTiO3 was then deposited conformally by RF 
sputtering onto the etched surface. Device fabrication was completed by e-
beam evaporation of Ti/Au backside ohmic contact and Ni top contacts. 
Extremely low dark currents (~0.25nA/cm2) were measured under reverse 
bias up to 200 V. The devices showed an excellent UV/visible rejection ratio 
[R(244)/R(400)=3.65 *107]. We estimated the peak responsivity to be 970 
mA/W at 244 nm at a reverse bias of -20 V. In conclusion, the work here 
shows the promise of Ni/BaTiO3/β-Ga2O3 for realizing photodetectors with 
excellent operating characteristics. This work lays the foundation for future 
studies where the high breakdown strength enabled by BaTiO3 could enable 
the design of solar-blind photodetectors with avalanche gain. We 
acknowledge funding from Department of Energy / National Nuclear 
Security Administration under Award Number(s) DE-NA0003921, and 
AFOSR GAME MURI (Award No. FA9550-18-1-0479, project manager Dr. Ali 
Sayir).[1] Xia et al, Appl. Phys. Lett. 115, 252104 (2019)[2]Dhara et al, Appl. 
Phys. Lett. 121, 203501 (2022) 

12:30pm EP+ET+MD-WeM-17 Best Paper Awards, e-Surveys, and Closing 
Remarks,  
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