

Fig. 2: Dual-sweep C-V characteristics at 1 MHz of (a) MOSCAPs with Al_2O_3 low-k layers and (b) MOSCAPs with SiO₂ low-k layer

Fig. 3: Equilibrium energy band diagram of the sample with 20 nm BaTiO₃ and 20 nm Al₂O₃

Fig. 4: Forward leakage characteristics of the four MOSCAPs

Fig. 5: Reverse leakage characteristics of the four MOSCAPs

Hybrid insulator Stack	Flat-band voltage	Net donor density from C-V	Insulator breakdown field under forward bias	Semiconductor breakdown field under reverse bias
20 nm Al ₂ O ₃ /20 nm BaTiO ₃	0.8 V	4.4x10 ¹⁸ cm ⁻³	5.7 MV/cm	<u>6.8 MV/cm</u>
20 nm Al ₂ O ₃ /35 nm BaTiO ₃	2 V	2.4x10 ¹⁸ cm ⁻³	4.7 MV/cm	5.9 MV/cm
24 nm SiO ₂ /35 nm BaTiO ₃	7.9 V	5.5x10 ¹⁸ cm ⁻³	2.0 MV/cm	3.6 MV/cm
24 nm SiO ₂ /50 nm BaTiO ₃	7.8 V	5.3x10 ¹⁸ cm ⁻³	0.9 MV/cm	3.5 MV/cm

 Table 1: Summary of flat-band voltage, extracted doping density, forward breakdown field in oxide, and reverse breakdown field supported in Ga₂O₃ for all four samples