


Figure 2: (a) J-V showing lower turn-on voltage and SBH for Pt and $PtO_x/Pt(1.5 \text{ nm})$ SBDs than PtO_x (b) C-V extracted SBH showing lower SBH for Pt and $PtO_x/Pt(1.5 \text{ nm})$ than PtO_x (c) Similar doping profile observed in all SBDs

Figure 3: Reverse J-V showing (a) $PtO_x/Pt (1.5 \text{ nm})$ provides substantially lower leakage and higher breakdown voltage compared to Pt SBDs. The ZrO₂ field-plate further improves the breakdown voltage to ~2.34 kV (b) Benchmark plot of on-resistance versus breakdown voltage from this work and other reports. A BFOM of 0.684 GW/cm² is achieved with the field plate PtO_x/Pt (1.5 nm) diodes.

Figure 4: (a) Simulated electric field contour plot of the PtO_x/Pt(1.5 nm) Schottky diode with ZrO₂ dielectric field-plate at voltage V=-2.34 kV. (b) Electric field at the center of the anode through cutline CD shows a punch-through field profile achieved at the breakdown voltage with a maximum value of ~3.25 MV/cm. Electric field at the fieldplate edge along cutline AB reveals that a peak field of 8.86 MV/cm and 8 MV/cm appear in Al₂O₃ and β-Ga₂O₃, respectively, indicating either one or both of them can be the critical locations of breakdown.