

Figure 1 a) Schematic drawing of the MOSFET devices under test, showing the as-fabricated device as well as the encapsulant. b) Optical microscope image of a device after aerosol jet spray printing of the BCB encapsulant. Inset: scanning electron micrograph of the device active channel, including dimensions.



Figure 2 Breakdown voltage  $V_{bk}$  and associated average electric field  $E_{crit,avg}$  for devices without encapsulation tested in air and Fluorinert, respectively; devices with BCB encapsulation tested in air and Fluorinert, respectively; and device tested with hBN-loaded BCB encapsulant.



Figure 3 a)  $I_d$ - $V_{ds}$  performance for a MOSFET prior to encapsulation; b) transfer curve  $I_d$ - $V_{gs}$  and transconductance  $G_m$  for the same device before (dotted line) and after (solid) hBN-BCB encapsulation; c) breakdown voltage  $V_{bk}$  of the same device.

- [1] Green et al., APL Materials 2022, doi:10.1063/5.0060327
- [2] Dryden et al., IEEE Electron Device Lett. 2022, doi: 10.1109/LED.2022.3182575
- [3] Sharma et al., IEEE Electron Device Lett. 2022, doi: 10.1109/LED/2022/3218749
- [4] Burdeaux et al., J. Electron. Mat. 1990, doi: 1.1007/BF02662825
- [5] Yao et al., IEEE Trans. Compon., Packag. Manufact. Technol. 2015, doi: 10.1109/TCPMT.2014.2337300
- [6] Li and Cheng, *IEEE Electrical Insulation Magazine* 2020, DOI:10.1109/MEI.2020.9070113