
GOX 2023 6th U.S. Workshop on Gallium Oxide (GOX 2023) **Heterogeneous Material Integration** Mirchandani¹

¹Syrnatec Inc.,95 Pond PL, Middletown, Connecticut 06457-8736, United States

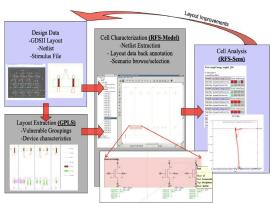


Figure 4: Design Analysis Approach

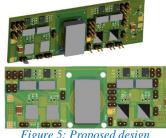
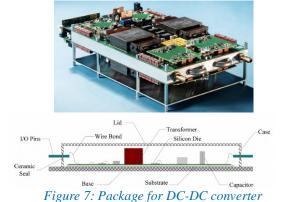
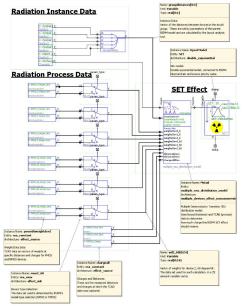



Figure 5: Proposed design


Figure 6: PEBB Experimental Setup for Steady State Thermal Characterization

Electron Saturati Velocity (10⁷ cm

Table 1 : Radiation Effects between Ga2O3 and Si MOSFETs

Radiation Type	Si MOSFET	Ga ₂ O ₃ MOSFET
Total Ionizing Dose And	Atomic change in lattice: • Carrier concentration altered	Strong bond, reinjection of carriers from Al ₂ O ₃ /Al ₂ N ₄ interface • Carrier concentration in 2DEG less affected
Displacement Damage	Metal Oxide layer traps charge: • Threshold voltage changes	Field Effect Transistor: • No oxide layer to trap charge
Single Event Effects	SE Gate Rupture (SEGR) • Catastrophic failure SE Burn Out (SEB) • Catastrophic failure	SE Gate Rupture (SEGR) • No Catastrophic failure observed SE Burn Out (SEB) • Catastrophic failure
Conclusion	Bulkier die to meet tolerance levels	Almost no die change, mainly packaging
	Very susceptible to radiation	Very tolerant to radiation
	High FOM: low performance	Low FOM: good performance

Figure 2: Radiation Modelling

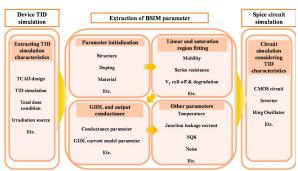


Figure 3: Flow chart of the simulations for TID