Reference

- [1]. M.H. Wong; et al., Japanese Journal of Applied Physics 55, no. 12: 1202B (2016)
- [2]. S Rafique; et al., Applied Physics Letters 112, no. 5: 052104 (2018).
- [3]. T. J. Asel; et al.; J. Vac. Sci. Technol., A 38, 043403 (2020).
- [4]. K. Tetzner, et al.; Microelectronics Reliability 114, 113951 (2020)
- [5]. S. Kumar; et al.; Applied Physics Letters 117(19): 193502. (2020)
- [6]. H. Doğan, et al; Physica B: Condensed Matter 457, 48 (2015).
- [7]. A. Turut, er al; Materials Science in Semiconductor Processing 39, 400 (2015).
- [8]. M. Yun, et al, Appl. Phys. Lett. 89 [1], 013506 (2006).

Fig. 1. Device schematic. The SIMS profile shows the concentration of Si and Fe in the dash box vertically.

Fig. 3. (a) Gate-to-source capacitance and (b) corresponding equivalent conductance of the test devices at various frequency (1k-1MHz). The discontinuity of the capacitance around -5V is an artifact of the equipment.

Fig. 5. (a) and (b) demonstrate the comparison of experimental results at $V_G = +5V$, 0V, and -3V and fit of models. The fitting parameters are listed in Table I.

Fig. 2. The transfer characteristics at $V_D = 1V$.

Fig. 4. (a) Schematic of coupling model when measuring gate-source impedance. (b) corresponding equivalent circuit.

Table I.	The values	of the elements	obtained from the fitting	

$V_{G}(V)$	+5	0	-3		
$C_{ideal}(F)$	2.0E-12	1.9E-12	1.6E-12	-	
				-	
$C_{GP}(F)$	$R_1(\Omega)$	$C_1(F)$	$R_2(\Omega)$	$C_2(F)$	$R_s(\Omega)$
8.6E-12	4.0E7	2.2E-12	7.0E4	1.1E-13	5.5E3