Advances in the MOCVD Growth of β -Ga₂O₃ and Related Heterostructures Andrei Osinsky and Fikadu Alema

Agnitron Technology, Inc, Chanhassen, MN 55317, U.S.A

 β -Ga₂O₃ has attracted extensive interest in power electronic applications owing to its large bandgap of ~ 4.9 eV, estimated high breakdown field of ~ 8 MV/cm, and availability of melt grown high quality β -Ga₂O₃ substrates. The growth of high-quality epitaxial films with low dislocation density and background impurity is critical to realize the projected device performances. Available epitaxial methods to grow β -Ga₂O₃ thin films include MBE, HVPE, and MOCVD. But, despite coming late to the field, the MOCVD method has proven to be suitable for producing high-quality epitaxial β -Ga₂O₃ films at a fast growth rate with uniform and controllable doping ¹. The highest purity β -Ga₂O₃ films have been reported from MOCVD with record low-temperature electron mobility exceeding 23,000 cm²/Vs and low~10¹³ cm⁻³ compensating acceptors ². Also, a recent record-breaking result for lateral Ga₂O₃ MESFETs with a lateral figure of merit (LFOM) of 355 MW/cm² and a breakdown voltage of ~2.5 kV ³, and a record low specific contact resistance ~10⁻⁷ Ω cm² ⁴ were reported based on MOCVD grown epitaxial Ga₂O₃ films.

This presentation will discuss recent progress in the growth of high-quality β -Ga₂O₃ thin films and related materials using MOCVD. The use of Ga precursors, including triethylgallium (TEGa) and trimethylgallium (TMGa), for the growth of Ga₂O₃ will be presented. Their advantages and disadvantages in realizing high-purity, carbon-free, epitaxial Ga₂O₃ films will be discussed. Critical process conditions and MOCVD reactor geometries on achieving high purity β -Ga₂O₃ films with high electron mobility and low background carrier concentration, including doping control in this range, will be discussed. This paper will also discuss the MOCVD growth of high Al composition (up to 30%) high quality strained β -(AlGa)₂O₃/Ga₂O₃ heterostructures and superlattices on various orientations of β -Ga₂O₃ substrates. The MOCVD growth of heavily doped (>10²⁰ 1/cm³), highly conductive β -Ga₂O₃, and strained β -(Al_xGa_{1-x})₂O₃/ β -Ga₂O₃ heterostructures will be presented. We will also present the demonstration of record low resistance Ohmic contacts on heavily Si doped epitaxial β -Ga₂O₃ and strained β -(Al_xGa_{1-x})₂O₃ epilayers with varying Al composition. A recent in-situ non-destructive etching of Ga₂O₃ in MOCVD followed by a regrowth process will also be discussed.

- [1] F. Alema et al., Journal of Crystal Growth 475 (2017) 77-82.
- [2] G. Seryogin et al., Applied Physics Letters 117 (2020) 262101.
- [3] A. Bhattacharyya et al., IEEE Electron Device Letters 42 (2021) 1272-1275.
- [4] F. Alema et al., EEE Electron Device Letters 43 (2022) 1649-1652.