Modeling of a High-Temperature Ultra-Wide Bandgap Gallium Oxide Power Module

Benjamin Albano, Boyan Wang, Christina DiMarino, Yuhao Zhang - Virginia Tech CPES

Method	Benefit(s)	Limitation(s)	
ANSYS Workbench	Quick solve time/ability to model	No electron scattering/no micro or nano scale	
	convection coefficient	device structures	
Silvaco TCAD 2D	Accurate electro-thermal interactions	Potential 2D-3D heat spreading	
		differences/no convection model	
Silvaco TCAD 3D	Accurate electro-thermal interactions	Very long solve time/no convection model	
$2D TCAD \rightarrow 3D$	Quick solve time/accurate device level	Static junction temperature	
ANSYS	electro-thermal interactions		

TABLE I - MODELING METHODLOGIES

Figure 1: Model dimensions, load conditions, and boundary conditions used in all simulations.

Figure 2: Temperature distribution for each model (a) across the anode surface and (b) through the die.

Method	Solve Time	Peak Temperature	∆T Across Device Surface	∆T Through Device
ANSYS Workbench	~2 minutes	358 °C	85 °C	65 °C
Silvaco TCAD 2D	~7 minutes	351 °C	59 °C	59 °C
Silvaco TCAD 3D	~13 minutes	358 °C	85 °C	68 °C

TABLE II - COMPARISON OF BOTTOM-SIDE COOLED DIODE MODELS