

Fig. 1. (a) Schematic and (b) photo of the double-side packaged Ga_2O_3 SBD encapsulated in silicone gel. (c) Ga_2O_3 SBD's fabrication process. (d) Schematic of the fabricated bare-die Ga_2O_3 SBDs. Photos of the Ag layer (e) before and (f) after 250°C sintering. If Ag is directly deposited on Au, during the 250°C sintering process, Ag was found to diffuse into the Au layer due to the absence of the Ti barrier layer. The Ag layer after sintering is porous, and the bonding quality of the sintered silver joint is bad (<10 MPa).

Fig. 2. (a) Process of double-side-cooling packaging. (b) Silver paste was stencil-printed (c) silicone encapsulant was poured into a mold to seal the Ga_2O_3 SBD, and cured in an oven. (d) The excess encapsulant was cut out with a sharp knife to liberate the packaged Ga_2O_3 SBD.

Fig. 5. (a) Photo of the $R_{\theta JC}$ measurement test setup. Schematic of $R_{\theta JC}$ measurements under (b) bottom-side cooling and (c) junction-side cooling.

Fig. 4. (a), (b) Forward I-V characteristics and (c) reverse I-V characteristics of the Ga₂O₃ SBDs before and after packaging.

TABLE I. Thermal resistance comparison between Ga₂O₃ SBDs and commercial SiC SBDs with similar current ratings and package sizes.

Device	Package	Package Size [*] (mm ²)	V _{ON} (V)	$I_{F}(A)^{**}$ @ 2 V	Cooling	$R_{ ext{ hetaJC}}$ (K/W)
Ga_2O_3 SBD	Double-	7.3×7.3	0.9	13	Junction	0.5
(this work)	side				Bottom	1.45
S1C SBD	то-263-2	6.5×7.9	0.85	18	Bottom	12
(C3D10060G)					Dottom	1.2
SiC SBD	TO-263-2	6.5×7.9	0.85	14.5	Bottom	1.47
(E3D08065G)						
SiC SBD	TO 252 2	5 2 4 2	0.05	10	D. //	2.00
(C6D04065E)	10-252-2	5.2×4.3	0.85	12	Bottom	2.89

Fig. 6. Transient thermal impedance curves of the Ga_2O_3 SBD measured with two thermal interface materials (silicon oil and thermal grease) under (a) junction- and (b) bottom-side cooling. The insets show the zoom-in plot of the separation point.

*Size of the die-attached thermal. **Forward current at 2 V forward voltage.