<table>
<thead>
<tr>
<th>Room/Time</th>
<th>Jefferson 1 & Atrium</th>
<th>Jefferson 2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC-MoM: Characterization & Modeling I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BG-MoM: Bulk & Epitaxy I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KEY1: Keynote Address</td>
<td></td>
</tr>
<tr>
<td>MoA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD-MoA: Process & Devices I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TM-MoA: Characterization & Modelling II</td>
<td></td>
</tr>
<tr>
<td>MoP</td>
<td>Poster Sessions:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Characterization Techniques (AC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dielectric Interfaces (DI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electronic and Photonic Devices, Circuits and Applications (EP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electronic Transport & Breakdown Phenomena (ET)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heterogeneous Material Integration (HM)</td>
<td></td>
</tr>
<tr>
<td>TuM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC-TuM: Advanced Characterization & Microscopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS1-TuM: Plenary Session I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TM-TuM: Characterization & Modelling III</td>
<td></td>
</tr>
<tr>
<td>TuA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI-TuA: Processes & Devices II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EG-TuA: Bulk & Epitaxy II</td>
<td></td>
</tr>
<tr>
<td>TuP</td>
<td>Poster Sessions:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epitaxial Growth (EG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material and Device Processing & Fabrication Techniques (MD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory, Modeling and Simulation (TM)</td>
<td></td>
</tr>
<tr>
<td>WeM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP-WeM: Process & Devices III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS2-WeM: Plenary Session II</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Speaker and Affiliation</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>8:30am</td>
<td>Welcome and Sponsor Thank Yous</td>
<td></td>
</tr>
<tr>
<td>8:45am</td>
<td>INVITED: KEY1-2 Keynote Lecture: Ga₂O₃ Device Technologies: Power Switching and High-Frequency Applications, and Beyond, Masatake Higashishiki, Department of Physics and Electronics, Osaka Metropolitan University, Japan; T. Kamimura, S. Kumar, Z. Wang, National Institute of Information and Communications Technology, Japan; T. Kitado, J. Iong, N. Shigekawa, Department of Physics and Electronics, Osaka Metropolitan University, Japan; H. Murakami, Y. Kumagai, Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Japan</td>
<td>Kelson Chabak, Air Force Research Laboratory, USA</td>
</tr>
<tr>
<td>9:00am</td>
<td>Bulk Growth</td>
<td></td>
</tr>
<tr>
<td>9:15am</td>
<td>Bulk Growth</td>
<td></td>
</tr>
<tr>
<td>9:30am</td>
<td>INVITED: AC-MoM-5 Characterization of Deep Acceptors in β-Ga₂O₃ by Deep Level Optical Spectroscopy, H. Ghadi, J. McGlone, E. Cornuelle, The Ohio State University; A. Senckowski, University of Massachusetts Lowell; S. Sharma, U. Singietti, University of Buffalo; M. Wong, University of Massachusetts Lowell; A. Arehart; Steven A Ringel, The Ohio State University</td>
<td>Elaheh Ahmadi, University of Michigan</td>
</tr>
<tr>
<td>9:45am</td>
<td>Bulk Growth</td>
<td></td>
</tr>
<tr>
<td>10:00am</td>
<td>Advanced Characterization Techniques</td>
<td></td>
</tr>
<tr>
<td>10:15am</td>
<td>AC-MoM-8 Defect Characterization in Gallium Oxide and Related Materials Using Terahertz Electron Paramagnetic Resonance Ellipsometry: Fe in Ga₂O₃, Matthias Schubert, University of Nebraska, Lincoln; S. Richter, Lund University, Sweden; S. Knight, P. Kuehne, Linkoping University, Sweden; M. Stakkey, R. Kolarcki, University of Nebraska-Lincoln; V. Stanishev, Linkoping University, Sweden; Z. Galazka, K. Irmischer, Leibniz-Institut fuer Kristallzuechtung, Germany; S. Mu, C. Van de Walle, University of California at Santa Barbara; V. Jvady, MPI Physics of Complex Systems, Germany; O. Balanescu-Lindvall, I. Abrikosov, Linkoping University, Sweden; V. Dorakchiev, Lund University, Sweden</td>
<td></td>
</tr>
<tr>
<td>10:30am</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>10:45am</td>
<td>INVITED: BG-MoM-10 β-Ga₂O₃ Growth and Wafer Fabrication, A. Brady, G. Founds, Chase Scott, Northrop Grumman SYNOPTICS; V. Gambin, Northrop Grumman Corporation; K. Stevens, Northrop Grumman SYNOPTICS; J. Blevins, Air Force Research Laboratory, Afghanistan</td>
<td>John Blevins, Air Force Research Laboratory, USA</td>
</tr>
<tr>
<td>11:00am</td>
<td>Bulk Growth</td>
<td></td>
</tr>
<tr>
<td>11:15am</td>
<td>BG-MoM-12 Increasing the Bandgap of β-Ga₂O₃ via Alloying with Al₂O₃ or Sc₂O₃ in Czochralski-grown Crystals, Benjamin Dutton, J. Jesenavec, B. Downing, J. McCloy, Washington State University</td>
<td></td>
</tr>
<tr>
<td>11:30am</td>
<td>BG-MoM-13 Chemi-Mechanical Polishing and Subsurface Damage Characterization of 2-inch (010) Semi-Insulating β-Ga₂O₃ Substrates, David Snyder, Penn State Applied Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>11:45am</td>
<td>BG-MoM-14 Ge-Delta Doped β-Ga₂O₃ Grown Via Plasma Assisted Molecular Beam Epitaxy, Thaddeus Asel, Air Force Research Laboratory, Materials and Manufacturing Directorate, USA; E. Steinbrunner, Wright State University, Department of Electrical Engineering; J. Hendrick, Air Force Institute of Technology, Department of Engineering Physics; A. Neal, S. Mou, Air Force Research Laboratory, Materials and Manufacturing Directorate, USA</td>
<td></td>
</tr>
<tr>
<td>12:00pm</td>
<td>BG-MoM-15 High Purity n-type β-Ga₂O₃ Films with 10⁻³⁷ cm⁻³ Residual Acceptor Concentration by MOCVD, Andrei Osinsky, F. Alexne, Agnitron Technology</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>1:45pm</td>
<td>MD-MoA-1</td>
<td>High Aspect Ratio Ga₂O₃-based Homo and Heterostructures by Plasma-free Metal-assisted Chemical Etching</td>
</tr>
<tr>
<td>2:00pm</td>
<td></td>
<td>Invited: MD-MoA-3 Blocking Behavior of N and Fe Ion Implanted β-Ga₂O₃, Bennett Cromer**</td>
</tr>
<tr>
<td>2:15pm</td>
<td>MD-MoA-4</td>
<td>Evolution and Recovery of Ion Implantation-Induced Damage Zone in β-Ga₂O₃, Elf Anber, D. Foley, J. Nathaniel, Johns Hopkins University; A. Lang, American Society for Engineering Education; J. Hart, Johns Hopkins University; M. Tadjer, K. Hobart, US Naval Research Laboratory; S. Pearston, University of Florida, Gainesville; M. Taheri, Johns Hopkins University</td>
</tr>
<tr>
<td>2:45pm</td>
<td>MD-MoA-5</td>
<td>Heterogeneous Integration of Single-Crystal β-Ga₂O₃ and N-Polar GaN Substrates With ZnO Interlayer Deposited by Atomic Layer Deposition, The (Ashley) Jian</td>
</tr>
<tr>
<td>3:00pm</td>
<td>MD-MoA-6</td>
<td>Structural Transformation of β-Ga₂O₃ through Si-implantation, Snorre Broathon Kjeldby, A. Azarov, P. Nguyen, Centre for Materials Science and Nanotechnology, University of Oslo and Department of Materials Science, National Research Nuclear University, "MEPhI", Norway; R. Mikkov, Nuclear Physics Institute of the Czech Academy of Sciences, Czechia; A. Macková, Nuclear Physics Institute of the Czech Academy of Sciences and Department of Physics, Faculty of Science, J.E. Purkyňe University, Czechia; J. Garcia-Fernández, A. Kuznetsov, P. Pyrty, L. Vines, Centre for Materials Science and Nanotechnology, University of Oslo, Norway</td>
</tr>
<tr>
<td>3:15pm</td>
<td>MD-MoA-7</td>
<td>Electrical Characteristics of in Situ Mg-Doped Ga₂O₃ Current-Blocking Layer for Vertical Devices, Sudipto Saha</td>
</tr>
<tr>
<td>3:30pm</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>3:45pm</td>
<td>MD-MoA-9</td>
<td>Transport, Doping, and Defects in β-Ga₂O₃, Adam Neal, Air Force Research Laboratory, Materials and Manufacturing Directorate, USA</td>
</tr>
<tr>
<td>4:00pm</td>
<td></td>
<td>Invited: TM-MoA-11 Structural Changes to Beta Gallium Oxide from Ion Irradiation Damage: Model and Relation to in-Situ Experiments, Alexander Petkov, D. Cherns, D. Liu, University of Bristol, UK; W. Chen, M. Li, Argonne National Laboratory, USA; J. Blewins, Air Force Research Laboratory, USA; V. Gambin, Northrop Grumman; M. Kuball, University of Bristol, UK</td>
</tr>
<tr>
<td>4:15pm</td>
<td></td>
<td>BBM-MoA-12 Band Structure Across κ-(InGaₓ)₂O₃/κ-[Al(Gaₓ₋₁)O₃] Thin Film Interfaces, Ingvild Julie Thue Jensen, A. Thogersen, E. Fertitta, B. Belle, SINTEF Materials Physics, Norway; A. Langgården, S. Cool, Y. Hømmedal, Ø. Pyrty, J. Wells, L. Vines, University of Oslo, Norway; H. von Wencckstern, University of Leipzig, Germany</td>
</tr>
<tr>
<td>4:30pm</td>
<td></td>
<td>BBM-MoA-13 Aluminum Incorporation Striations in [-201] β-(Al₆Ga₁₋₃)O₃ Films Grown on C-Plane and Miscut Sapphire Substrates, Kenny Huynh, Y. Wang, M. Liao</td>
</tr>
<tr>
<td>4:45pm</td>
<td></td>
<td>BBM-MoA-14 Plasmon-phonon Coupling in Electrostatically Gated β-Ga₂O₃ Films with Mobility Exceeding 200 cm²V⁻¹s⁻¹, A. Rajapitamaha, A. Manjeshwar, University of Minnesota, USA; A. Kumar, A. Datta, University at Buffalo; P. Ranga, University of California Santa Barbara; L. Thoutam, SR University, Warangal, India; S. Krishnamoorthy, University of California Santa Barbara; Uttam Singisetti, University at Buffalo; B. Jolan, University of Minnesota, USA</td>
</tr>
<tr>
<td>5:00pm</td>
<td></td>
<td>MoA-15 Indium Incorporation Striations in [-201] β-(Al₆Ga₁₋₃)O₃ Films Grown on C-Plane and Miscut Sapphire Substrates, Kenny Huynh, Y. Wang, M. Liao</td>
</tr>
</tbody>
</table>
Monday Evening, August 8, 2022

Advanced Characterization Techniques

Room Jefferson 1 & Atrium - Session AC-MoP

Advanced Characterization Techniques Poster Session

AC-MoP-1 Advanced Defect Characterization in b-Ga2O3 Without the Arrhenius Plot, Jian Li, NCKU, Taiwan; A. Neel, S. Mou, Air Force Research Laboratory, Materials and Manufacturing Directorate, USA; M. Wong, University of Massachusetts Lowell

AC-MoP-2 Infrared-Active Phonon Modes and Static Dielectric Constants of Orthorhombic LiGa2O4, Teresa Gramer, M. Stokey, R. Korlacki, M. Schubert, University of Nebraska - Lincoln

AC-MoP-3 Spectroscopic Ellipsometry Optical Analysis of Zinc Gallate at Elevated Temperatures, Emma Williams, University of Nebraska-Lincoln, USA; M. Helfiker, U. Kilic, Y. Traouli, N. Koeppe, J. Rivera, A. Abakar, M. Stokey, R. Korlacki, University of Nebraska - Lincoln; Z. Galazka, Leibnitz-Institut für Kristallzüchtung, Germany; M. Schubert, University of Nebraska - Lincoln

AC-MoP-4 The Electron Spin Hamiltonian for Fe瞜 in Monoclinic β-Ga2O3, Steffen Richter, Lund University, Sweden; K. Knight, P. Kühne, Linköping University, Sweden; M. Schubert, University of Nebraska - Lincoln; V. Darakchieva, Lund University, Sweden

AC-MoP-5 Characterization of (010) β-Ga2O3 to Support Fabrication, Wafer Size Scaleup, and Epi Development, David Snyder, Penn State Applied Research Laboratory

AC-MoP-7 Surface Relaxation and Rumpling of Sn Doped β-ga2o3(010), Nick Barrett, CEA Saclay, France; A. Pancotti, Universidade Federal de Jatiai, Brazil; T. Back, AFRL; W. Hamouda, M. Laccheb, C. Lubin, A. Boucl, CEA Saclay, France; P. Soukaiassian, Université Paris-Saclay, France; J. Baekli, D. Dorsey, S. Mou, T. Aset, AFRL; G. Geneste, CEA, France

AC-MoP-9 Evolution of Anisotropy and Order of Band-to-Band Transitions, Excitons, Phonons, Static and High Frequency Dielectric Constants Including Strain Dependencies in Alpha and Beta Phase (Al(Ga)2O3), Megan Stokey, University of Nebraska-Lincoln; R. Korlacki, M. Helfiker, T. Gramer, University of Nebraska - Lincoln; J. Knudtson, University of Nebraska-Lincoln; S. Richter, Lund University, Sweden; S. Knight, Linköping University, Sweden; A. Mock, Weber State University; A. Maue, Y. Zhang, J. Speck, University of California Santa Barbara; R. Jinno, Y. Cho, H. Xing, D. Jena, Cornell University; Y. Oshima, National Institute for Materials Science, Japan; E. Ahmadi, University of Michigan; V. Darakchieva, Lund University, Sweden; M. Schubert, University of Nebraska - Lincoln

AC-MoP-10 Photoluminescence Mapping of Gallium Oxide and Aluminum Gallium Oxide Epitaxial Films, Jacqueline Cooke, P. Ranga, University of Utah; J. Jesenovec, J. McCloy, Washington State University; S. Krishnamoorthy, University of California at Santa Barbara; M. Scarpulla, B. Sensale-Rodriguez, University of Utah

AC-MoP-11 Cathodoluminescence (CL) Evaluation of Silicon Implant Activation and Damage Annealing in Beta Ga2O3 EPI in Heavily Silicon Doped Contact Regions, Stephen Tetlak, Air Force Research Laboratory; K. Gann, J. McCandless, Cornell University; K. Liddy, Air Force Research Laboratory; D. Jenno, M. Thompson, Cornell University

AC-MoP-12 Non-Destructive Characterization of Annealed Si-Implanted Thin Film β-Ga2O3, Aine Connolly, K. Gann, Cornell University; S. Tetlak, Air Force Research Laboratory; V. Protasenko, Cornell University; M. Scocum, S. Mou, Air Force Research Laboratory; M. Thompson, Cornell University

Electronic and Photonic Devices, Circuits and Applications

Room Jefferson 1 & Atrium - Session EP-MoP

Electronic and Photonic Devices, Circuits and Applications Poster Session

EP-MoP-2 Gate Effects of Channel and Sheet Resistance in β-Ga2O3 Field-Effect Transistors using the TLM Method, Ory Maimon, Department of Electrical Engineering, George Mason University; N. Masier, Air Force Research Laboratory, Sensors Directorate; K. Liddy, A. Green, K. Chabak, Air Force Research Laboratory, Sensors Directorate; C. Richter, K. Cheung, S. Poojkpanratna, Nanoscale Device and Characterization Division, National Institute of Standards and Technology; Q. Li, Department of Electrical Engineering, George Mason University

Electronic Transport and Breakdown Phenomena

Room Jefferson 1 & Atrium - Session ET-MoP

Electronic Transport and Breakdown Phenomena Poster Session

ET-MoP-1 Improved Breakdown Voltage and Electrical Characteristics of SrTiO3 Dielectrics on β-Ga2O3 Power Device, Teojik Choi, H. Lee, Y. Rim, Sejong University, Korea (Republic of)

ET-MoP-2 Electric Field Mapping in β-Ga2O3 by Photocurrent Spectroscopy, Darun Verma, M. Adnan, S. Dhar, Ohio State University; C. Sturm, Universität Leipzig, Germany; S. Rajan, R. Myers, Ohio State University

ET-MoP-3 Activation of Si, Ge, and Sn Donors in High-Resistivity Halide Vapor Phase Epitaxial β-Ga2O3, Joseph Spencer, Naval Research Laboratory/ Virginia Tech CPE5; M. Tadjer, A. Jacobs, M. Masr, J. Gallagher, J. Freitas, Jr, Naval Research Laboratory; T. Yu, A. Karamota, K. Sasaki, Novel Crystal, Japan; Y. Zhang, Virginia Tech (CPE5); T. Anderson, K. Hobart, Naval Research Laboratory

Heterogeneous Material Integration

Room Jefferson 1 & Atrium - Session HM-MoP

Heterogeneous Material Integration Poster Session

HM-MoP-1 Structural and Thermal Transport Analysis of Wafer Bonded β-Ga2O3/4H-SiC, Michael Liao, K. Huyhn, Y. Wang, UCLA; Z. Cheng, UIUC; J. Shi, GaTech; F. Mu, IMECAS, China; T. You, W. Xu, X. Ou, ShanghaiTech, China; T. Suga, Meisei University, Japan; S. Graham, GaTech; M. Gooskys, UCLA

HM-MoP-3 Grafted Si/Ga2O3 pn Diodes, H. Jang, D. Kim, University of Wisconsin - Madison; J. Gong, University of Wisconsin at Madison; F. Alemu, A. Oisinsky, Agnitrion Technology Inc.; K. Chabak, Air Force Research Laboratory; G. Jessen, BAE Systems; G. Vincent, Northrup Grumann; S. Pasayat, C. Gupta, University of Wisconsin - Madison; Zhenqiang Ma, 1415 Engineering Drive

Dielectric Interfaces

Room Jefferson 1 & Atrium - Session DI-MoP

Dielectric Interfaces Poster Session

DI-MoP-1 Band Offsets of MOCVD Grown β-(Al0.21Ga0.79)2O3/β-Ga2O3 (010) Heterojunctions, T. Morgan, J. Rudie, M. Zamani-Aljovijeh, A. Kuchuk, University of Arkansas; N. Orishchin, F. Alemu, Agnitrion Technology Incorporated; A. Oisinsky, Agnitrion Technology Incorporated, United States Minor Outlying Islands (the); R. Sleez, Minnesota State University at Mankato; G. Salamo, University of Arkansas, United States Minor Outlying Islands (the); Morgan Ware, University of Arkansas

Monday Evening, August 8, 2022
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30am</td>
<td>Plenary Session</td>
<td>Welcome and Sponsor Thank Youans</td>
</tr>
<tr>
<td>8:45am</td>
<td>INVITED: PS1-TuM-2</td>
<td>Plenary Lecture: Gallium Oxide Electronics - Device Engineering Toward Ultimate Material Limits, Siddharth Rajan, The Ohio State University</td>
</tr>
<tr>
<td>9:00am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:15am</td>
<td>INVITED: TM-TuM-4</td>
<td>First-Principles Modeling of Ga$_2$O$_3$, Hartwin Peelaers, University of Kansas</td>
</tr>
<tr>
<td>9:30am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:45am</td>
<td>TM-TuM-6</td>
<td>Theory of Acceptor-Donor Complexes in Ga$_2$O$_3$, I. Chatratin, F. Sabino, University of Delaware; P. Reunchan, Kasetsart University, Thailand; Anderson Janotti, University of Delaware</td>
</tr>
<tr>
<td>10:00am</td>
<td>TM-TuM-7</td>
<td>Holder Doping of Monoclinic and Corundum (AlxGa${1-x}$)$_2$O$_3$, Darshana Wickramaratne, US Naval Research Laboratory; J. Varley, Lawrence Livermore National Laboratory; J. Lyons, US Naval Research Laboratory</td>
</tr>
<tr>
<td>10:15am</td>
<td>TM-TuM-8</td>
<td>The Co-Design, Fabrication, and Characterization of a Ga2O3-on-SiC MOSFET, Yiwen Song, Pennsylvania State University; A. Bhattacharyya, University of Utah; A. Karim, D. Shoemaker, Pennsylvania State University; H. Huang, Ohio State University; C. McGarvey, Modern Microsystems, Inc.; J. Leach, Kyma Technologies, Inc.; J. Hwang, Ohio State University; S. Krishnamoorthy, University of California at Santa Barbara; S. Choi, Pennsylvania State University</td>
</tr>
<tr>
<td>10:30am</td>
<td></td>
<td>BREAK</td>
</tr>
<tr>
<td>10:45am</td>
<td>INVITED: AC-TuM-10</td>
<td>Defects in Gallium Oxide – How We “See” and Understand Them, Jinwoo Hwang, The Ohio State University</td>
</tr>
<tr>
<td>11:00am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15am</td>
<td>AC-TuM-12</td>
<td>Atomic-Scale Investigation of Point and Extended Defects in Ion Implanted β-Ga$_2$O$_3$, Hsiien-Lien Huang, C. Chae, The Ohio State University; A. Senckowski, M. Wong, Penn State University; J. Hwang, The Ohio State University</td>
</tr>
<tr>
<td>11:30am</td>
<td>AC-TuM-13</td>
<td>Microscopic and Spectroscopic Analysis of (100), (-201) and (010) (AlxGa${1-x}$)$_2$O$_3$ Films Using Atom Probe Tomography, Jith Sarker, University at Buffalo-SUNY; A. Bhuiyan, Z. Feng, L. Meng, H. Zhao, The Ohio State University; B. Mazumder, University at Buffalo-SUNY</td>
</tr>
<tr>
<td>12:00pm</td>
<td>AC-TuM-15</td>
<td>Investigation of Extended Defects in Ga2O3 Substrates and Epitaxial Layers using X-ray Topography, Nadeemullah A. Mahadik, M. Tadjer, T. Anderson, K. Hobart, Naval Research Laboratory, USA; K. Sasaki, A. Kuramata, Novel Crystal Technology, Japan</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Speaker/Institution</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1:45pm</td>
<td>Invited: EG-TuA-1 Progress in Beta-Gallium Oxide Materials and Properties, James Speck, University of California Santa Barbara</td>
<td></td>
</tr>
<tr>
<td>2:00pm</td>
<td>EG-TuA-3 (110) β-Ga₂O₃ Epitaxial Films Grown by Plasma-Assisted Molecular Beam Epitaxy, Takeki Itoh, A. Mouze, Y. Zhang, J. Speck, University of California at Santa Barbara</td>
<td></td>
</tr>
<tr>
<td>2:45pm</td>
<td>Invited: EG-TuA-5 MOVPE Growth of Ga₂O₃ and (Al,Ga)₂O₃, Hongping Zhao, The Ohio State University</td>
<td></td>
</tr>
<tr>
<td>3:00pm</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>3:45pm</td>
<td>Di-TuA-9 Dielectric Integration on (010) β-Ga₂O₃, Al₂O₃, SiO₂ Interfaces and their Thermal Stability, Ahmad Islam, Air Force Research Laboratory; A. Miesle, University of Dayton; M. Diez, Wright State University; K. Leedy, S. Ganguli, Air Force Research Laboratory; G. Subramonyam, University of Dayton; W. Wang, Wright State University; N. Sepelak, D. Dryden, KBR, Inc.; T. Aseil, A. Neat, S. Mou, T. Tetlak, K. Liddy, A. Green, K. Chabak, Air Force Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>4:00pm</td>
<td>Di-TuA-10 Deep Etch Field-Terminated β-Ga₂O₃ Schottky Barrier Diodes With 4.2 MV/cm Parallel Plate Field Strength, Sushovan Dhara, N. Kalarickala, A. Dheenan, C. Joishi, R. Rajan, The Ohio State University</td>
<td></td>
</tr>
<tr>
<td>4:15pm</td>
<td>Di-TuA-11 Demonstration of Low Thermal Resistance in Ga₂O₃ Schottky Diodes by Junction-Side-Cooled Packaging, Boyan Wong, M. Xiao, J. Knoll, Y. Qin, Virginia Polytechnic Institute and State University; J. Spencer, U.S. Naval Research Laboratory; M. Tadjer, U.S. Naval Research Laboratory; C. Buttay, Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, France; K. Sasaki, Novel Crystal Technology, Japan; G. Lu, C. Dimarino, Y. Zhang, Virginia Polytechnic Institute and State University</td>
<td></td>
</tr>
<tr>
<td>4:30pm</td>
<td>Di-TuA-12 High Temperature In-situ MOVPE-grown Al₂O₃ Dielectric on (010) β-Ga₂O₃ with 10 MV/cm Breakdown Field, Saurav Ray, University of California Santa Barbara; A. Bhattacharyya, University of Utah; C. Peterson, S. Krishnamoorthy, University of California Santa Barbara</td>
<td></td>
</tr>
<tr>
<td>4:45pm</td>
<td>Di-TuA-13 Metal Oxide (PtOX) Schottky Contact with High-k Dielectric Field Plate for Improved Field Management in Vertical β-Ga₂O₃ Devices, Esmat Farzana, University of California Santa Barbara; A. Bhattacharyya, The University of Utah; T. Itoh, S. Krishnamoorthy, J. Speck, University of California Santa Barbara</td>
<td></td>
</tr>
</tbody>
</table>
Tuesday Evening, August 9, 2022

Epitaxial Growth
Room Jefferson 1 & Atrium - Session EG-TuP
Epitaxial Growth Poster Session
5:00pm

EG-TuP-1 α-phase Gallium Oxide Thin Films Stabilized on a-, r- and m-plane Sapphire Substrates via Reactive Magnetron Sputtering and Pulsed Laser Deposition, **Edgars Butanovs**, Institute of Solid State Physics University of Latvia

EG-TuP-3 LPCVD Grown n-GaO$_x$ on p-GaN and Demonstration of p-n Heterojunction Behavior, **Anrab Mondal**, A. Nandi, M. Yodoy, Indian Institute of Technology Mandi, India; A. Bag, Indian Institute of Technology Guwahati, India

EG-TuP-4 MOCVD Epitaxy of [Al,Ga]$_2$O$_3$ Thin Films on (001) β-GaO$_3$ Substrates, A F M Anhar Uddin Bhuiyan, L. Meng, H. Huang, The Ohio State University; J. Sarkar, University at Buffalo; M. Zhu, The Ohio State University; B. Mazumder, University at Buffalo; J. Hwang, H. Zhao, The Ohio State University

EG-TuP-7 High Conductivity Homoepitaxial β-GaO$_3$ Regrowth Layers by Pulsed Laser Deposition, **Hyung Min Jeon**, KBR; K. Leedy, Air Force Research Laboratory

EG-TuP-8 Low-Temperature Epitaxial Growth and in Situ Atomic Layer Doping of β-GaO$_3$ Films via Plasma-Enhanced ALD, **Saifuddarvozhom Lhom**, A. Mohammad, J. Grasso, B. Wills, University of Connecticut; A. Okuy, Stanford University; N. Bylki, University of Connecticut

EG-TuP-9 Highly conductive β-GaO$_3$ and (Al,Ga)$_2$O$_3$ epitaxial films by MOCVD, **Fikadu Alemu**, Agnitrone Technology; T. Itoh, J. Speck, Materials Department, University of California, Santa Barbara; A. Osinsky, Agnitrone Technology

Theory, Modeling and Simulation
Room Jefferson 1 & Atrium - Session TM-TuP
Theory, Modeling and Simulation Poster Session
5:00pm

TM-TuP-1 Simulation Study of Single Event Effects in GaO$_3$ Schottky Diodes, **Agnishesh Datta**, U. Singisetti, University at Buffalo

TM-TuP-2 Anisotropic Photoresponsivity and Deviation from Beer-Lambert Law in Beta Gallium Oxide, **Md Mohsinur Rahman Adnan**, D. Verma, S. Dharo, The Ohio State University; C. Sturm, Universitat Leipzig, Germany; S. Rajan, R. Myers, The Ohio State University

TM-TuP-3 Linear Strain and Stress Relationships in Monoclinic and Rhombohedral Phases of Ga$_2$O$_3$, **Rafael Korlacki**, University of Nebraska-Lincoln; J. Knudtson, University of Nebraska–Lincoln; M. Stokke, M. Hilfiker, University of Nebraska-Lincoln; V. Darakchieva, Linköping University, IFM, Sweden; M. Schubert, University of Nebraska-Lincoln

TM-TuP-4 Self-Trapped Holes and Polaronic Acceptors in Ultrawide Bandgap Oxides, **John Lyons**, US Naval Research Laboratory

TM-TuP-5 Modeling for a High-Temperature Ultra-Wide Bandgap Gallium Oxide Power Module, **Benjamin Alban**, Virginia Tech Center for Power Electronics Systems; B. Wang, C. Dimarino, Y. Zhang, Virginia Tech Center for Power Electronics

TM-TuP-6 Atomic Surface Structure of Sn doped β-Ga$_2$O$_3$(010) Studied by Low-energy Electron Diffraction, **Alexandre Pancotti**, Universidade Federal de Jatai, Brazil; J. T. Sadowski; Center for Functional Nanomaterials, Brookhaven National Laboratory; A. Sandre Kilian, Universidade Federal de Jatai, Brazil; D. Duarte dos Reis, Universidade Federal do Mato Grosso do Sul, Brazil; C. Lubin, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, France; A. Bouchy, SPEC, CEA, CNRS, Université Paris-Saclay, France; P. Souskissian, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, France; J. Boeckx, D. Dorsey, Air Force Research Laboratory; M. Shin, T. ASEI, Air Force Research Lab; J. Brown, N. Barret, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, France; T. Back, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay

TM-TuP-7 Determination of Gallium Vacancy and Aluminum Diffusion Constants in b-(Al,Ga)$_2$O$_3$ / Ga$_2$O$_3$ Superlattices, **Haobo Yang Yang**, University of Utah

Material and Device Processing and Fabrication Techniques
Room Jefferson 1 & Atrium - Session MD-TuP
Material and Device Processing and Fabrication Techniques Poster Session
5:00pm

MD-TuP-1 Record Low Specific Resistance Ohmic Contacts to Highly Doped MOVPE-Grown β-Ga$_2$O$_3$ and β-(Al,Ga)$_2$O$_3$ Epitaxial Films, **Carl Peterson**, University of California Santa Barbara; F. Alemu, Agnitrone Technology; S. Roy, University of California Santa Barbara; A. Bhattacharyya, University of Utah; A. Osinsky, Agnitrone Technology; S. Krishnamoorthy, University of California Santa Barbara

MD-TuP-4 Subsurface Damage Analysis of Chemical Mechanical Polished (010) β-Ga$_2$O$_3$ Substrates, **Michael Liau**, K. Huynh, L. Matteo, D. Luccioni, M. Goorsky, UCLA

MD-TuP-5 Diffusion of Zn in β-Ga$_2$O$_3$, **Ylva Knausgård Hommedal**, Y. Froddson, L. Vines, K. Johansen, Centre for Materials Science and Nanotechnology/Dep. of Physics, University of Oslo, Norway

MD-TuP-6 Initial Nucleation of Metastable γ-Ga$_2$O$_3$ During sub-Millisecond Thermal Anneals of Amorphous Ga$_2$O$_3$, **Katie Gann**, C. Chang, M. Chang, D. Sutherland, A. Conally, D. Muller, R. van Dover, M. Thompson, Cornell University

MD-TuP-7 Heavily Doped β-Ga$_2$O$_3$ Deposited by Magnetron Sputtering, **Adetayo Adeleji**, Elizabeth City State University; J. Lawson, C. Ebing, University of Dayton Research Institute; J. Merrett, Air Force Research Laboratory
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30am</td>
<td>Welcome and Sponsor Thank Yous</td>
<td></td>
<td>Room Jefferson 2-3</td>
</tr>
<tr>
<td>8:45am</td>
<td>INVITED: PS2-WeM-2 Plenary Lecture: Fundamental Limits of Ga$_2$O$_3$ Power Devices and How to Get There, Huili Grace Xing, Cornell University</td>
<td>Kelson Chabak, Air Force Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>9:00am</td>
<td>EP-WeM-4 Remarkable Improvement of Conductivity in B-Ga$_2$O$_3$ by High-Temperature Si Ion Implantation, Arka Sardar, T. Isaacs-Smith, S. Dhar, Auburn University; J. Lawson, N. Merrett, Air Force Research Laboratory, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:15am</td>
<td>INVITED: EP-WeM-5 Towards Lateral and Vertical Ga$_2$O$_3$ Transistors for High Voltage Power Switching, Kornelia Tetzner, J. Würfl, E. Bahat-Treidel, O. Hilt, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), Germany; Z. Galazka, S. Bin Anooz, A. Popp, Leibniz-Institut für Kristallzüchtung (IKZ), Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:45am</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00am</td>
<td>EP-WeM-8 Comparison of β-Ga$_2$O$_3$ Mosfets With TiW and NiAu Metal Gates for High-Temperature Operation, Nicholas Sepelak, KBR, Wright State University; D. Dryden, KBR; R. Kahler, University of Texas at Dallas; J. Williams, Air Force Research Lab, Sensors Directorate; T. Asel, Air Force Research Laboratory, Materials and Manufacturing Directorate; H. Lee, University of Illinois at Urbana-Champaign; K. Gann, Cornell University; A. Popp, Leibniz-Institut für Kristallzüchtung, Germany; X. Liddy, Air Force Research Lab, Sensors Directorate; K. Leedy, Air Force Research Laboratory, Sensors Directorate; W. Wang, Wright State University; W. Zhu, University of Illinois at Urbana-Champaign; M. Thompson, Cornell University; S. Mou, Air Force Research Laboratory, Materials and Manufacturing Directorate, USA; K. Chadab, A. Green, Air Force Research Laboratory, Sensors Directorate; A. Islam, Air Force Research Laboratory, Sensors Directory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15am</td>
<td>EP-WeM-9 High Electron Mobility Si-doped β-Ga$_2$O$_3$ MESFETs, Arkka Bhattacharyya, University of Utah; S. Roy, University of California at Santa Barbara; P. Ranga, University of Utah; S. Krishnamoorthy, University of California at Santa Barbara</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:45am</td>
<td>EP-WeM-11 Insights Into the Behaviour of Leakage Current in Lateral Ga$_2$O$_3$ Transistors on Semi-Insulating Substrates, Zequan Chen, A. Mishra, M. Smith, T. Moule, University of Bristol, UK; M. Li, University of Bristol, UK; S. Kumar, M. Higashiwaki, National Institute of Information and Communications Technology, Japan; M. Kuball, University of Bristol, UK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00am</td>
<td>EP-WeM-12 Device Figure of Merit Performance of Scaled Gamma-Gate β-Ga$_2$O$_3$ MOSFETs, Kyle Liddy, A. Islam, J. Williams, D. Walker, N. Moser, D. Dryden, N. Sepelak, K. Chadab, A. Green, AFRL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15am</td>
<td>Closing Remarks, Sponsor Thank Yous, & Collection of e-Surveys</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
— A —
Abakar, A.: AC-MoP-3, 4
Abrikosov, I.: AC-MoM-8, 2
Aasted, J.: MD-TuP-7, 7
Adnan, M.: ET-MoP-2, 4; TM-TuP-2, 7
Agapiou, D.: MD-MoA-5, 3
Ahmadi, E.: AC-MoP-9, 4; MD-MoA-5, 3
Albano, B.: TM-TuP-5, 7
Albrecht, M.: EG-TuP-7, 6
Alem, A.: ET-MoP-15, 2; DI-MoP-1, 4; DI-MoP-2, 4; ET-TuP-9, 7; EP-MoP-3, 4; HM-MoP-3, 4; MD-TuP-1, 7; MD-TuP-3, 7
Anber, E.: MD-MoA-4, 3
Anderson, T.: AC-TuM-15, 5; ET-MoP-3, 4
Arehart, A.: AC-MoM-5, 2
Arias-Purdue, A.: EP-MoP-3, 4
Asel, T.: AC-MoP-7, 4; BG-MoM-14, 2; DI-TuA-9, 6; EG-TuA-4, 6; EG-TuP-2, 7; EP-MoP-4, 4; EP-WeM-8, 8
ASEL, T.: TM-TuP-6, 7
Azarov, A.: MD-MoA-6, 3
Azizie, K.: EG-TuA-4, 6; EG-TuP-2, 7
— B —
Back, T.: AC-MoP-7, 4; TM-TuP-6, 7
Bag, A.: EG-TuP-3, 7
Bahat-Treidel, E.: EP-WeM-5, 8
Barrett, N.: TM-TuP-6, 7
Barrett, N.: AC-MoP-7, 4
Belle, B.: TM-MoA-12, 3
Bhattacharyya, A.: DI-TuA-12, 6
Bhattacharyya, A.: AC-MoM-7, 2; TM-TuM-8, 5
Bhattacharyya, A.: DI-TuA-13, 6
Bhattacharyya, A.: MD-TuP-1, 7
Bhattacharyya, A.: EP-WeM-9, 8
Bhuiyan, A.: AC-TuM-13, 5; EG-TuP-4, 7; MD-MoA-7, 3
Bin Anooz, S.: EG-TuA-7, 6; EP-WeM-5, 8
Biyikli, N.: EG-TuP-8, 7
Blevins, J.: BG-MoM-10, 2; TM-MoA-11, 3
Boeckl, J.: AC-MoP-7, 4; TM-TuP-6, 7
Boulay, A.: AC-MoP-7, 4; TM-TuP-6, 7
Brady, A.: BG-MoM-10, 2
Brown, J.: TM-TuP-6, 7
Bulancea-Lindvall, O.: AC-MoM-8, 2
Butanovs, E.: EG-TuP-1, 7
Buttay, C.: DI-TuA-11, 6
— C —
Cabral, M.: AC-TuM-14, 5
Callahan, W.: EP-MoP-1, 4
Chabay, K.: DI-TuA-9, 6; EG-TuA-4, 6; EG-TuP-5, 7; EP-MoP-2, 4; EP-MoP-3, 4; EP-WeM-12, 8; EP-WeM-8, 8; HM-MoP-3, 4; MD-MoA-3, 3
Chae, C.: AC-TuM-12, 5
Chan, C.: MD-MoA-1, 3
Chang, C.: MD-TuP-6, 7
Chang, M.: MD-TuP-6, 7
Chatratin, I.: TM-TuM-6, 5
Chen, J.: DI-MoP-2, 4
Chen, W.: TM-MoA-11, 3
Chen, Z.: EP-WeM-11, 8
Cheng, Z.: HM-MoP-1, 4
Cherns, D.: TM-MoA-11, 3
Cheung, K.: EP-MoP-2, 4
Cho, Y.: AC-MoP-9, 4; EG-TuP-6, 7
Choi, S.: TM-TuM-8, 5
Choi, T.: ET-MoP-1, 4
Chou, T.: EG-TuA-7, 6
Clymore, C.: MD-MoA-5, 3
Connolly, A.: AC-MoP-12, 4; MD-TuP-6, 7
Cool, S.: TM-MoA-12, 3
Cooke, J.: AC-MoP-10, 4
Cornuelle, E.: AC-MoM-5, 2
Cromer, B.: MD-MoA-3, 3
García-Fernández, J.: MD-MoA-6, 3
Geneste, G.: AC-MoP-7, 4
Ghadi, H.: AC-MoM-5, 2
Ginley, D.: EP-MoP-1, 4
Gokhale, V.: EG-TuP-5, 7; HM-MoP-2, 4
Gong, J.: HM-MoP-3, 4
Goorsky, M.: HM-MoP-1, 4; MD-TuP-4, 7; TM-MoA-13, 3
Graham, S.: HM-MoP-1, 4
Gramer, T.: AC-MoP-2, 4; AC-MoP-9, 4
Grasso, J.: EG-TuP-8, 7
Green, A.: DI-TuA-9, 6; EG-TuA-4, 6; EP-MoP-2, 4; EP-MoP-3, 4; EP-WeM-12, 8; EP-WeM-8, 8; MD-MoA-3, 3
Greaden, T.: EG-TuP-5, 7
Grüneberg, R.: EG-TuA-7, 6
Gu, L.: AC-TuM-14, 5
Gupta, C.: DI-MoP-2, 4; HM-MoP-3, 4
Halverson, C.: AC-MoP-8, 4
Hamouda, W.: AC-MoP-7, 4
Hardy, M.: EG-TuP-5, 7
Har, J.: MD-MoA-4, 3
Hendrick, J.: BG-MoM-14, 2
Hendriks, N.: MD-MoA-3, 3
Hensling, F.: EG-TuA-4, 6
Higashiwaki, M.: EP-WeM-11, 8; KEY1-2, 2
Hilfiker, M.: AC-MoP-3, 4; AC-MoP-9, 4; TM-TuP-3, 7
Hilt, O.: EP-WeM-5, 8
Hobart, K.: AC-TuM-15, 5; ET-MoP-3, 4; MD-MoA-4, 3; MD-TuP-3, 7
Hommedal, Y.: MD-TuP-5, 7; TM-MoA-12, 3
Huang, H.: AC-TuM-12, 5; EG-TuP-4, 7; MD-MoA-1, 3; TM-TuM-8, 5
Huyhn, K.: HM-MoP-1, 4; MD-TuP-4, 7; TM-MoA-13, 3
Hwang, J.: AC-TuM-10, 5; AC-TuM-12, 5; EG-TuP-4, 7; TM-TuM-8, 5
Ilhom, S.: EG-TuP-8, 7
Irmischer, K.: AC-MoM-8, 2; EG-TuA-7, 6
Isaacs-Smith, T.: EP-WeM-4, 8
Islam, A.: DI-TuA-9, 6; EG-TuA-4, 6; EP-MoP-3, 4; EP-WeM-12, 8; EP-WeM-8, 8
Itoh, T.: EG-TuP-9, 7
Itoh, T.: DI-TuA-13, 6; EG-TuA-3, 6
Ivády, V.: AC-MoM-8, 2
Jacobs, A.: ET-MoP-3, 4; MD-TuP-3, 7
Jalan, B.: TM-MoA-14, 3
Jang, H.: HM-MoP-3, 4
Janotti, A.: TM-TuM-6, 5
Jena, D.: AC-MoP-9, 4; EG-TuA-4, 6; EG-TuP-2, 7; EG-TuP-6, 7; EP-MoP-4, 4; MD-MoA-3, 3
Jenn, A.: AC-MoA-11, 4
Jensen, I.: TM-MoA-12, 3
Jeon, H.: EG-TuP-7, 7
Scott, C.: BG-MoM-10, 2
Senckowski, A.: AC-MoM-5, 2; AC-TuM-12, 5
Sensale-Rodriguez, B.: AC-MoP-10, 4
Sepelak, N.: DI-TuA-9, 6; EP-MoP-3, 4; EP-WeM-12, 8; EP-WeM-8, 8
Seyidov, P.: EG-TuA-7, 6
Sharma, S.: AC-MoM-5, 2
Shi, J.: HM-MoP-1, 4
Shigekawa, N.: KEY1-2, 2
Shin, M.: TM-TuP-6, 7
Shoemaker, D.: TM-TuM-8, 5
Singh, K.: EP-MoP-3, 4
Singisetti, U.: AC-MoM-5, 2; MD-MoA-7, 3; TM-MoA-14, 3; TM-TuP-1, 7
Sleezer, R.: DI-MoP-1, 4
Slocum, M.: AC-MoP-12, 4
Smith, K.: MD-MoA-3, 3
Smith, M.: EP-WeM-11, 8
Snyder, D.: AC-MoP-5, 4; BG-MoM-13, 2
Soheil, S.: EP-MoP-1, 4
Song, Y.: TM-TuM-8, 5
Souklassian, P.: AC-MoP-7, 4; TM-TuP-6, 7
Speck, J.: AC-MoP-9, 4; DI-TuA-13, 6; EG-TuA-1, 6; EG-TuA-3, 6; EG-TuP-9, 7
Spencer, J.: DI-TuA-11, 6; ET-MoP-3, 4; MD-TuP-3, 7
Stanishev, V.: AC-MoM-8, 2
Steele, J.: EG-TuP-2, 7
Steinbrunner, E.: BG-MoM-14, 2; EG-TuP-6, 7
Stevens, K.: BG-MoM-10, 2
Stokey, M.: AC-MoM-8, 2; AC-MoP-2, 4; AC-MoP-3, 4; AC-MoP-9, 4; TM-TuP-3, 7
Sturm, C.: ET-MoP-2, 4; TM-TuP-2, 7
Subramaniam, G.: DI-MoA-9, 6
Suga, T.: HM-MoP-1, 4
Sutherland, D.: MD-TuP-6, 7
T —
T. Sadowski, J.: TM-TuP-6, 7
Tajder, M.: MD-MoA-4, 3
Tajder, M.: AC-TuM-15, 5; DI-TuA-11, 6; ET-MoP-3, 4; MD-TuP-3, 7
Taheri, M.: MD-MoA-4, 3
Tahnen, N.: EG-TuP-6, 7
Tang, J.: AC-TuM-14, 5
Tetlak, S.: AC-MoA-11, 4; AC-MoP-12, 4; DI-TuA-9, 6; EP-MoP-4, 4
Tetzner, K.: EP-WeM-5, 8
Thøgersen, A.: TM-MoA-12, 3
Thompson, M.: AC-MoP-11, 4; AC-MoP-12, 4; EP-MoP-4, 4; EP-WeM-8, 8; MD-MoA-3, 3; MD-TuP-6, 7
Thoutam, L.: TM-MoA-14, 3
Tran Thi Thuy, V.: EG-TuA-7, 6
Traouli, Y.: AC-MoP-3, 4
Tu, T.: ET-MoP-3, 4
U —
Uren, M.: EP-WeM-11, 8
V —
Van de Walle, C.: AC-MoM-8, 2
van Dover, R.: MD-TuP-6, 7
Varley, J.: TM-TuM-7, 5
Venkatapalapathy, V.: MD-MoA-6, 3
Virma, D.: ET-MoP-2, 4; TM-TuP-2, 7
Vincent, G.: HM-MoP-3, 4
Vines, L.: MD-MoA-6, 3; MD-TuP-5, 7; TM-MoA-12, 3
Vogt, P.: EG-TuA-4, 6
von Wencs, H.: TM-MoA-12, 3
W —
Walker, D.: EP-WeM-12, 8
Wang, B.: DI-TuA-11, 6; TM-TuP-5, 7
Wang, G.: DI-MoP-2, 4
Wang, W.: DI-TuA-9, 6; EP-WeM-8, 8
Wang, Y.: HM-MoP-1, 4; TM-MoA-13, 3
Wang, Z.: KEY1-2, 2
Ware, M.: DI-MoP-1, 4
Weber, M.: AC-MoP-8, 4
Wells, J.: TM-MoA-12, 3
Wheeler, V.: EG-TuP-5, 7; HM-MoP-2, 4
Wickramaratne, D.: TM-TuM-7, 5
William, J.: EP-WeM-8, 8
Williams, E.: AC-MoP-3, 4
Williams, J.: EP-MoP-3, 4; EP-WeM-12, 8
Willis, B.: EG-TuP-8, 7
Wong, M.: AC-MoM-5, 2; AC-MoP-1, 4; AC-TuM-12, 5
Würfel, J.: EP-WeM-5, 8
X —
Xiao, M.: DI-TuA-11, 6
Xing, G.: MD-MoA-3, 3
Xing, H.: AC-MoP-9, 4; EG-TuA-4, 6; EG-TuP-2, 7; EG-TuP-6, 7; PS2-WeM-2, 8
Xu, W.: HM-MoP-1, 4
Y —
Yadav, M.: EG-TuP-3, 7
Yang, H.: AC-MoM-7, 2; TM-TuP-7, 7
You, T.: HM-MoP-1, 4
Z —
Zakutayev, A.: EP-MoP-1, 4
Zaman-Alavijeh, M.: DI-MoP-1, 4
Zhang, Y.: AC-MoP-9, 4; DI-TuA-11, 6; EG-TuA-3, 6; ET-MoP-3, 4; TM-TuP-5, 7
Zhao, H.: AC-TuM-13, 5; EG-TuA-5, 6
EG-TuP-4, 7; EP-WeM-10, 8; MD-MoA-7, 3
Zhu, M.: EG-TuP-4, 7
Zhu, W.: EP-WeM-8, 8