Activation of C-X bonds on transition metal surfaces: Insight from DFT studies

Matías Picuntureo¹, Ilker Tezsevin², Marc Merkx², Scott Semproni³, Jiun-Ruey Chen³, Adriaan Mackus², and Tania Sandoval¹

¹ Universidad Técnica Federico Santa María, Department of Chemical and Environmental Engineering, Chile.

² Eindhoven University of Technology, Department of Applied Physics, The Netherlands.

³Intel Corporation, Hillsboro, OR 97124, United States

Figure 1. Set of functionalized benzene-based small molecule inhibitors (SMIs) considered in this study.

Figure 2. General reaction scheme for surface-mediated dissociation of SMIs via C–X bond cleavage.

on W	HOMO-LUMO	Adsorption	Reaction
	Gap (eV)	Energy (eV)	Energy (eV)
Cl-Benzene	4.6	-3.3	-0.9
Br-Benzene	4.5	-3.4	-1.0
I-Benzene	4.1	-3.6	-1.1

Figure 3. Snapshots from 800K AIMD simulation showing the energy profile of Cl-transfer to the W surface. Summary of electronic and thermodynamic properties for halo-benzenes de halogenation.

Figure 4. Snapshots from 1000K AIMD simulation showing the energy profile of O-transfer to the W surface. The optimized dissociated adsorbed state is 1.2 eV more stable than the initial state.