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9:15am NS2+2D-TuM-6 On-Surface Synthesis on Inert and Reactive 
Surfaces, Rafał Zuzak, Szymon Godlewski, Jagiellonian University, Poland 

In recent years the on-surface manipulation and chemical reactions created 
a playground for atomically precise synthesis and development of new 
atomic and molecular nanostructures. However, the abilities to produce 
desired systems are limited, among others, by relying on the catalytic role 
of the substrate in initiating selected reactions. Therefore striving for the 
generation of desired systems forces the search of new reaction pathways 
and catalytic transformations. 

In this talk I will demonstrate our approach based on the application of 
inert and reactive surfaces in the on-surface experiments. First, I will 
discuss the synthesis of the acene series with the first observation of spin 
excitation recorded for tridecacene [1]. Subsequently the focus will be 
shifted toward non-metallic substrates and the new pathway for the 
synthesis of new molecular compounds [2] with prospects for 
circumventing the need to exploit the catalytic role of metallic substrates 
[3]. Finally, concepts for on-surface reactions on chemically active lithium 
substrates will be presented. They will be focused on preventing 
catastrophic dendrite formation in battery electrodes. 

The research was supported by the National Science Center, Poland: 
2019/35/B/ST5/02666, 2022/04/Y/ST5/00156. 
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9:30am NS2+2D-TuM-7 Generalized Defect Quantification of 2D Materials 
with Atomic Force Microscopy, Matthew Rosenberger, University of Notre 
Dame INVITED 

Routine defect characterization is a critical capability for understanding 
defect-property correlations and optimizing growth of two-dimensional 
(2D) materials. High throughput optical methods for defect 
characterization, such as Raman spectroscopy, are useful for graphene, but 
are insufficiently sensitive to defects in some other 2D materials, such as 
transition metal dichalcogenides (TMDs), particularly for defect densities of 
about 1012 cm-2 or less. Typical methods for directly detecting defects at the 
atomic scale, such as scanning transmission electron microscopy (STEM) 
and scanning tunneling microscopy (STM), are effective, but they are slow 
and often require arduous sample preparation. There is a need for 2D 
material defect characterization techniques that are routine, fast, and 
reliable. Here, we demonstrate two atomic force microscopy (AFM)-based 
techniques for locating and quantifying atomic-scale defects in 2D 
materials. First, we show that conductive AFM can locate and differentiate 
the same defects as STM by comparing conductive AFM and STM on the 
same region of a TMD crystal1. Our work establishes conductive AFM as a 
higher-throughput alternative to STM for defect quantification. Second, we 
show that lateral force microscopy (LFM) can locate atomic-scale defects 
through a direct comparison of LFM with conductive AFM on a TMD 
crystal2. Importantly, we show that LFM can locate atomic-scale defects in 
TMD monolayers on insulating substrates and in insulating 2D materials, 
such as hexagonal boron nitride, because LFM is a purely mechanical 
technique. The AFM-based methods presented here enable routine defect 
characterization, which will facilitate rapid investigations of defect-property 
relationships and speed up the development of new growth processes. 
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11:00am NS2+2D-TuM-13 Excess Barrier Height Unlocks Andreev 
Reflection in Scanning Tunneling Microscopy, Petro Maksymovych, 
Clemson University; Wonhee Ko, University of Tennessee Knoxville; Jose 
Lado, Aalto University, Finland 

Superconductors are currently entering a new golden age, marked by a 
renewed quest for higher Curie temperature, explosion of new candidate 
superconducting materials and emerging applications, such as topological 
quantum computing. However, the foundational questions—whether the 
material is actually superconducting and what causes superconductivity—
remain as pertinent as ever. Indeed, pairing symmetry—a key property of 
any superconductor—can be a challenging and contested property, even for 
materials where superconductivity itself is unambiguous. 

To this end, we introduced a new approach to detect Andreev reflection 
(AR) in metal-superconducting contacts of arbitrarily high resistance, most 
notably in scanning tunneling microscopy (STM). Fundamentally, AR allows 
the injection of Cooper pairs from a metal to a superconductor, producing 
excess conductance and a unique sensitivity to the properties of a 
superconducting state. However, detecting AR in traditional transport 
measurements requires low (ideally zero) contact resistance —limiting its 
application to mesoscale and contact geometries. To remove this limitation, 
we shifted the experimental observable from the excess conductance to the 
excess height of the tunneling barrier, providing a new approach to detect, 
probe, and quantify Andreev reflection. 

In this talk, I will discuss how tunneling barrier height spectroscopy 
functions in superconducting junctions and present our recent 
computational and experimental results on AR-STM with both conventional 
and unconventional superconductors. The barrier height spectroscopy has a 
rich structure with combined sensitivity to the pairing symmetry, number of 
superconducting gaps and the detailed structure of the Fermi surface. 
Moreover, excess barrier height detects special, higher order Andreev 
reflection processes, that occur in proximate tunneling junctions just before 
the collapse of the tunneling barrier. As a result, STM can now leverage the 
unique power of Andreev reflection to probe superconductivity, magnetism 
and even topological properties from a new perspective. Research 
sponsored by Clemson University and US Department of Energy. SPM 
experiments were carried at the Center for Nanophase Materials Sciences, 
Oak Ridge National Laboratory, a US DOE User Facility. Song/PM, arXiv: 
2411.11724; Ko/PM. Nano Letters, 2023 23 (17), 8310-8318; Song/PM, 
Nano Letters 2023 23 (7), 2822-2830; Ko/PM, Nano Letters 2022 22 (10), 
4042-4048 

11:15am NS2+2D-TuM-14 Dynamic Evolution of Rh/Fe3O4(001) Catalysts 
Under Hydrogen Conditions, Mausumi Mahapatra, Loyola University 
Chicago; Marcus Sharp, Zdenek Dohnalek, Christopher Lee, Yifeng Zhu, 
Oliver Gutiérrez, Bruce Kay, Pacific Northwest National Laboratory 

Metal/oxide interfaces are a new emerging class of catalysts owing to their 
unique electronic and chemical properties. In this study, we have prepared 
a series of model Rh/Fe3O4(001)catalysts that include Rh adatoms (Rhad), 
mixed surface layers with octahedrally-coordinated Rh (Rhoct), as well as 
metallic Rh clusters and nanoparticles (Rhmet) on Fe3O4(001). Using X-ray 
photoelectron spectroscopy (XPS) and scanning tunneling microscopy 
(STM), we investigated the activity of such model systems towards H2 and 
their stability in reducing environments. Our results show that the 
atomically dispersed Rhad and Rhoct species do not activate H2, which would 
result in the formation of surface hydroxyls on Fe3O4(001). In contrast, the 
presence of Rhmet in H2 results in the formation of hydroxyls and 
subsequent etching of the Fe3O4(001) at higher temperatures (≥ 500 K) due 
to water formation via the Mars−van Krevelen mechanism. Additionally, 
such surface etching leads to the release of the Rhoct from the surface 
lattice and their sintering to Rhmet. To bridge the material gap between the 
model and high surface area catalysts, we perform parallel studies on 
powder Rh/Fe3O4 catalysts. The XPS characterization shows remarkable 
similarities between these systems. Further, our model studies provide an 
atomistic picture of the behavior of high surface area catalysts in the H2 
atmosphere. 

11:30am NS2+2D-TuM-15 Hybrid ALD-MLD HfOx Thin Films: The Role of 
Carbon for Memristive Application, Soham Shirodkar, Dushyant Narayan, 
Minjong Lee, Dan Le, University of Texas at Dallas; Jacob N. Rohan, Cerfe 
Labs, Austin; Jiyoung Kim, University of Texas at Dallas 

Resistive switching (RS) memories based on transition metal oxides (TMOs) 
are a promising class of emerging nonvolatile memory devices for next‐
generation electronics. However, conventional TMO‐based RS memories 
typically require high forming voltages (Vform) during initial operation, 
consuming excessive power. To address this issue, incorporation of metal 
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dopant species into TMOs is proposed to lower the Vform [1]. For example, 
Hf/Zr doping in TiO2 ReRAM has been demonstrated to increase the 
formation of oxygen vacancies, leading to lower forming voltages [2]. In our 
previous work, we have demonstrated that incorporating carbon into HfOx 
films via a hybrid Atomic Layer Deposition (ALD)/Molecular Layer 
Deposition (MLD) process can eliminate the need for a forming process, 
enabling ‘Born-ON’ behavior during the first sweep [3,4]. However, control 
of carbon incorporation is challenging due to its high atmospheric 
reactivity. Therefore, the choice of organic precursor during the MLD can 
significantly influence the film's properties and ultimately the device 
properties. 

In this work, we systematically investigate the impact of different organic 
precursors during ALD/MLD hybrid process using two linear-chain 
hydrocarbons Ethylene Glycol (EG) and Glycerol (GL) as well as an aromatic 
hydrocarbon Hydroquinone (HQ). These organic precursors vary in number 
of carbon atoms and number and position of OH groups. In this regard, we 
observed significant differences in growth per cycle (GPC) and carbon 
bonding states: HQ, being the largest molecule, exhibited the highest GPC-
3.1 Å/cycle and carbon composition-45% along with higher expected C-sp2 
content due to its aromaticity. Whereas EG showed a low GPC-0.2 Å/cycle 
and less carbon incorporation-15% due to its small size and possible 
poisoning effects. In contrast, GL, with an additional OH group, likely 
mitigates these poisoning effects common to linear hydrocarbons, resulting 
in a GPC of 2.1 Å/cycle and 31% carbon content. Metal-Insulator-Metal 
devices with these films exhibit distinct 'Born-ON' behavior as well as 
resistive switching without electroforming, though each precursor-based 
film requires a different thermal budget to activate this response. This 
study underscores the crucial role of precursor chemistry in tailoring the 
properties of carbon-doped TMO memristors and offers potential pathways 
for improving RS device performance. 

This research is supported by Cerfe Labs and Air Force Research 
Laboratories. 
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11:45am NS2+2D-TuM-16 Quantitative Comparative Force Spectroscopy 
on Molecules, Xinzhe Wang, Yale University; Percy Zahl, Brookhaven 
National Laboratory; Jara Trujillo Mulero, Universidad Autonoma de 
Madrid, Spain; Hailiang Wang, Yale University; Rubén Pérez, Universidad 
Autonoma de Madrid, Spain; Eric Altman, Udo Schwarz, Yale University 

Understanding molecular-scale interactions at surfaces is essential for 
advancing catalyst design and developing efficient energy conversion 
processes. Here, we report ongoing efforts to improve the spatial accuracy 
and quantitative reliability of three-dimensional atomic force microscopy 
(3D-AFM) by refining data correction techniques for CO-functionalized tips. 
These developments allow us to minimize tip- and substrate-induced 
artifacts and isolate the intrinsic molecular interaction at atomic resolution. 

As a testbed for this approach, we investigate cobalt phthalocyanine (CoPc) 
and its amino-functionalized counterpart ((NH₂)₄CoPc) adsorbed on 
Ag(111), both of which are of interest in CO2 electroreduction catalysis. By 
identifying and removing asymmetric force contributions caused by the 
metallic structure of the tip, we obtain corrected force spectroscopy data 
that reveal equilibrium interaction distances and energies across individual 
molecules. Our analysis shows that NH2 substitution alters the spatial 
distribution of interaction strength, decreasing equilibrium distances near 
ligand attachment points while broadly reducing interaction energy with 
the tip. 

These experimental observations agree well with DFT-based simulations 
and suggest that side-group functionalization directly modulates the 
molecule’s chemical landscape. The methodology provides a direct route 
toward correlating molecular structure with catalytic behavior at the single-
molecule level, thereby enabling a deeper understanding of functional 
molecular systems on surfaces. 

12:00pm NS2+2D-TuM-17 Thermal Strain-Induced Nanogap Formation in 
Monolayer MoS2 during CVD Growth, Seonha Park, Sieun Jang, Songkil 
Kim, School of Mechanical Engineering, Pusan National University, Republic 
of Korea 

Molybdenum disulfide (MoS₂) is a promising semiconducting material due 
to its atomic flatness and high carrier mobility. In particular, chemical vapor 
deposition (CVD)-grown MoS₂ has been widely explored for electronic 

applications owing to its high quality and scalability. However, the 
mismatch in thermal expansion coefficients between MoS₂ and the growth 
substrate induces strain in MoS₂ flakes, and the nanogap structure can be 
formed to release such growth-induced strain. Understanding and 
controlling this unique nanogap structure is of great interest, as it offers 
opportunities for applications such as nanogap electrodes, biosensors, and 
gas sensors. In this work, nanogap formation mechanisms and the factors 
governing gap size and morphology were systematically investigated in 
monolayer CVD MoS₂. To investigate the role of MoS₂–substrate interfacial 
bonding strength in nanogap formation, three samples with different 
adhesion properties with the substrate are prepared. Strain distribution 
analysis using photoluminescence (PL) mapping and statistical analysis of 
multiple SEM images revealed that interfacial bonding strength significantly 
affects strain relaxation behavior, where weaker bonding facilitates strain 
release, leading to faster crack propagation and more irregular gap paths. 
The crystallographic configuration also influenced propagation behavior. 
Asymmetric bi-crystalline flakes with misorientation angles showed a 
stronger tendency for cracks to follow grain boundaries due to increased 
mechanical instability. Additionally, the relationship between flake size and 
nanogap size was also investigated. In samples with moderate interfacial 
bonding strength, a linear increase in nanogap size was observed with 
increasing flake size above a critical threshold. In contrast, strongly bonded 
samples exhibited smaller nanogaps than the moderate bonding sample, 
with minimal variation in gap size regardless of flake size. These results 
suggest that nanogap size can be effectively controlled by tuning the 
interfacial bonding strength and the flake size. 
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