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Moderators: Shengxi Huang, Rice University, Daniel Yimam, Oak Ridge 
Natinal Laboratory 

8:00am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-1 Probing the Ultrafast 
Charge Dynamics and Exciton Emission from Single Atomic Defects in 2D 
Semiconductors by Lightwave-Driven STM, Laric Bobzien, Lysander 
Huberich, Jonas Allerbeck, Eve Ammerman, Nils Krane, Andres Ortega-
Guerrero, Carlo Pignedoli, Oliver Gröning, Empa, Swiss Federal Laboratories 
for Materials Science and Technology, Switzerland; Joshua A. Robinson, The 
Pennsylvania State University; Bruno Schuler, Empa, Swiss Federal 
Laboratories for Materials Science and Technology, Switzerland INVITED 

Two-dimensional (2D) semiconductors provide an exciting platform to 
engineer atomic quantum systems in a robust, yet tunable solid-state 
system. This talk explores the intriguing physics of single point defects in 
transition metal dichalcogenide (TMD) monolayers, investigated through 
atomically resolved scanning probe microscopy. 

We have determined the layer-dependent charge transfer lifetimes of 
selenium vacancies in WSe₂ on graphene substrates, spanning picosecond 
to nanosecond timescales [1]. By leveraging our recently developed 
lightwave-driven scanning tunneling microscope (THz-STM) [2,3], we could 
probe the ultrafast charge dynamics on the atomic scale. Time-domain 
sampling with a THz pump-THz probe scheme enabled capturing atomic-
scale snapshots of transient Coulomb blockade, a hallmark of charge 
transport mediated by quantized defect states [4]. 

Moreover, the extended charge state lifetimes provided by hBN decoupling 
layers facilitated the local, electrical stimulation of excitonic emission from 
pristine MoS2 and individual charged defects via STM luminescence (STML). 

By combining the structural and electronic properties accessible by 
conventional scanning probe microscopy with the optical fingerprint from 
STML and the excited-state dynamics revealed through pump-probe THz-
STM, we gain a comprehensive microscopic understanding of localized 
quantum states in low-dimensional materials. 

References: 
[1]L. Bobzien et al. Phys. Rev. Lett. (accepted, arxiv: 2407.04508) 
[2]J. Allerbeck et al. ACS Photonics 10, 3888 (2023) 
[3]L. Bobzien et al. APL Mater. 12, 051110 (2024) 
[4]J. Allerbeck et al. arXiv:2412.13718 (2024) 
[5]L. Huberich et al. (in preparation) 

8:30am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-3 Many-Body Effects on 
Excitons, Trions, and Defect-Bound States in 2D Materials, Kai Xiao, 
Taegwan Park, Alexander Puretzky, Oak Ridge National Laboratory, USA; 
Xufan Li, Honda Research Institute; Kyungnam Kang, Oak Ridge National 
Laboratory, USA; Austin Houston, University of Tennessee, Knoxville; 
Christopher Rouleau, David Geohegan, Oak Ridge National Laboratory, USA 

Two-dimensional (2D) materials, particularly transition metal 
dichalcogenides (TMDs) exhibit strong many-body interactions due to 
reduced dielectric screening and spatial confinement. These interactions, 
involving electrons, holes, excitons, phonons, and plasmons, give rise to 
emergent phenomena distinct from their bulk counterparts. In this talk, I 
will present our recent investigations into the many-body effects on the 
optical properties and ultrafast excitonic dynamics of monolayer and bilayer 
TMDs. Specifically, we synthesized isotopically pure monolayer MoS₂ and 
highly defective WS₂ via nonequilibrium chemical vapor deposition, 
enabling a controlled study of isotope effects, defects, and background 
doping on excitonic behavior. Using ultrafast laser spectroscopy and 
temperature-dependent optical spectroscopy, we observed pronounced 
many-body interactions, including exciton-phonon and exciton-electron 
coupling, which significantly influence exciton energy, dynamics, and light-
matter interactions in both monolayer and bilayer TMDs. These strong 
interactions give rise to novel quantum states and make 2D materials 
promising platforms for next-generation optoelectronics, quantum 
information technologies, and fundamental condensed matter physics. 

Synthesis science was supported by the U.S. Dept. of Energy, Office of 
Science, Materials Science and Engineering Division. This work was 
performed at the Center for Nanophase Materials Sciences, which is a DOE 
Office of Science User Facility. 

8:45am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-4 Proximity-Induced 
“Magic” Raman Bands in TERS Spectra of MoS2 / WS2 @ 1L H-BN-Capped 
Gold, Andrey Krayev, HORIBA Scientific; Pavel Valencia Acuna, PNNL; Ju-
Hyun Jung, Pohang University of Science and Technology (POSTECH), 
Republic of Korea; Cheol-Joo Kim, POSTECH, Republic of Korea; Andrew 
Mannix, Stanford University; Eleonora Isotta, Max Planck Institute for 
Sustainable Materials, Germany; Chih-Feng Wang, PNNL 

Recently it was proposed to use the monolayer h-BN – capped gold 
substrates as an ideal platform for the gap mode TERS and TEPL imaging, 
that on the one hand, should preserve strong gap mode enhancement of 
Raman signal due to small thickness (0.3 nm) of the dielectric h-BN layer, 
and on the other hand preserve strong TEPL response due to de-coupling of 
2D semiconductors from the metallic substrate. TERS data collected on 
mono- and a few-layer-thick crystals of MoS2 and WS2 on 1L-h-BN-capped 
gold show both the TERS and TEPL response, confirming the validity of the 
proposed approach. 

In addition to the enhancement of both the PL and Raman signal, in the 
course of assessment of TERS/TEPL response of mono- and a few-layer-
thick crystals of MoS2 and WS2 deposited on 1L h-BN-capped gold we 
observed in TERS spectra, completely unexpectedly, appearance of Raman 
bands at about 796 cm-1 and 76 cm-1 which are not normally observed in 
regular Raman spectra of h-BN or WS2/MoS2. We can safely state that these 
“magic” bands belong to h-BN as they appear at the same spectral position 
in TERS spectra of both the monolayer MoS2 and WS2 deposited on the 
monolayer h-BN capped gold, moreover, the 796 cm-1 band often was the 
strongest band observed in TERS spectra, even stronger than A’ mode from 
WS2 or MoS2. Presence of the transition metal dichalcogenide (TMD) 
monolayer is mandatory for the appearance of these “magic” bands as they 
are absent outside of the monolayer TMDs in these samples. Literature 
search showed that similar (but not identical) phenomenon was observed 
earlier in h-BN encapsulated WSe2,MoSe2, and WS2. There have been 
several significant differences between our data and the earlier reported 
one: in our case we have not been able to observe the “magic bands” in 
MoSe2 and WSe2 @ 1L h-BN@Au, while WS2 monolayers deposited on the 
same substrate as WSe2, showed expected response. More importantly, the 
excitation laser wavelength dependence in our case was completely 
different from what was reported earlier: in WS2-based samples we 
observed strong “magic” bands with excitation at 830 nm, 785nm, 594nm, 
but not 633nm, the wavelength closest to the A exciton in this material. 
This excitation profile is remarkably reminiscent of the excitation profile of 
the monolayer WS2 in intimate contact with silver where we observed 
strong dip of the intensity of main A’ mode in TERS spectra at 633nm 
excitation wavelength. 

We will argue that intricate interaction between the tip-substrate gap 
plasmon, TMD excitons and most probably, normally mid-IR-active phonons 
in h-BN is responsible for the appearance of observed “magic” bands. 

9:00am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-5 Correlated Excitons in 
TMDC Moiré Superlattice, Sufei Shi, Carnegie Mellon University INVITED 

In a strongly correlated electronic system, Coulomb interactions among 
electrons dominate over kinetic energy. Recently, two-dimensional (2D) 
moiré superlattices of van der Waals materials have emerged as a 
promising platform to study correlated physics and exotic quantum phases 
in 2D. In transition metal dichalcogenides (TMDCs) based moiré 
superlattices, the combination of large effective mass and strong moiré 
coupling renders the easier formation of flat bands and stronger electronic 
correlation, compared with graphene moiré superlattices. Meanwhile, the 
strong Coulomb interaction in 2D also leads to tightly bound excitons with 
large binding energy in TMDCs. In this talk, we will discuss how to use 
optical spectroscopy to investigate excitonic physics and strongly correlated 
phenomena in TMDC moiré superlattice, along with correlated exciton 
states arising from strong interactions. 

9:30am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-7 Sub-Stoichiometric 
Phases in 2D MoTe2, Onyedikachi Alanwoko, Nirosha Rajapakse, Matthias 
Batzill, University of South Florida 

Atom vacancy formation in crystalline materials is energetically expensive. 
To lower the energy cost for non-stoichiometry, point defects can condense 
into energetically more favorable extended defects. Studies on Mo-
dichalcogenides have shown that excess Mo is condensed into closed, 
triangular Mirror Twin Boundary (MTB) loops. These MTBs can form in high 
densities where the triangular loops connect and form a cross-hatched 
network of MTBs. Here we show through Scanning Tunneling Microscopy 
(STM) that periodically ordered MTB networks can obtain a homologous 
series of sub-stoichiometric MoTe2-X phases. We systematically investigate 
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the preparation conditions (which include a variation of the growth 
temperature, Te-desorption by post-growth annealing, and vapor-deposited 
Mo), enabling the controlled synthesis of these new phases. The different 
phases require different synthesis procedures, and once formed, these 
phases appear thermally stable in vacuum. The ability to control and create 
these different phases of MoTe2 and other two-dimensional (2D) materials 
is a promising way of realizing new electronic and chemical properties of 2D 
materials. Particularly promising is the observation that we can react MoTe2 
with dissimilar transition metals to create new doped or alloyed 2D 
materials with potentially desirable properties. 

9:45am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-8 Quantum Confining 
Excitons with Electrostatic Moiré Superlattice, Liuxin Gu, Lifu Zhang, Sam 
Felsenfeld, University of Maryland, College Park; Rundong Ma, University of 
Maryland College Park; Suji Park, Houk Jang, Brookhaven National 
Laboratory; Takashi Taniguchi, Kenji Watanabe, National Institute for 
Materials Science, Japan; You Zhou, University of Maryland, College Park 

Quantum confining excitons has been a persistent challenge in the pursuit 
of strong exciton interactions and quantum light generation. Unlike 
electrons, which can be readily controlled via electric fields, imposing 
strong nanoscale potentials on excitons to enable quantum confinement 
has proven challenging. In this study, we utilize piezoelectric force 
microscopy to image the domain structures of twisted hexagonal boron 
nitride (hBN), revealing evidence of strong in-plane electric fields at the 
domain boundaries. By placing a monolayer MoSe₂ only one to two 
nanometers away from the twisted hBN interface, we observe energy 
splitting of neutral excitons and Fermi polarons by several millielectronvolts 
at the moiré domain boundaries. By directly correlating local structural and 
optical properties, we attribute such observations to excitons confined in a 
nanoscale one-dimensional electrostatic potential created by the strong in-
plane electric fields at the moirédomain boundaries. Intriguingly, this 1D 
quantum confinement results in pronounced polarization anisotropy in the 
excitons’ reflection and emission, persistent to temperatures as high as ~80 
Kelvins. These findings open new avenues for exploring and controlling 
strongly interacting excitons for classical and quantum optoelectronics. 

11:00am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-13 Microwave 
Imaging of Excitonic States and Fractional Chern Insulators in 2D 
Transition Metal Dichalcogenides, Zhurun Ji, SLAC National Accelerator 
Laboratory/ MIT INVITED 

Nanoscale electrodynamics offers a unique perspective on states with bulk-
edge correspondence or spatially dependent excitations. I will introduce 
our latest advancements in optically coupled microwave impedance 
microscopy, a technique that enhances our capability to explore 
electrodynamics at the nanometer scale. I will discuss our recent studies 
utilizing this technology to extract spectroscopic information on exciton 
excitations within transition metal dichalcogenide systems. Additionally, I 
will share our recent findings on probing topological and correlated 
electronic states, specifically the fractional Chern insulator states in twisted 
TMD bilayers. 

11:30am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-15 Control and 
Properties of Single Dislocations in Van Der Waals Nanowires, Peter 
Sutter, Eli Sutter, University of Nebraska - Lincoln 

Line defects (dislocations) not only govern the mechanical properties of 
crystalline solids but they can also produce distinct electronic, thermal, and 
topological effects. Identifying and accessing this functionality requires 
control over the placement and geometry of single dislocations embedded 
in a small host volume to maximize emerging effects. We have identified a 
synthetic route that enables the rational placement and tuning of 
dislocation in van der Waals nanowires, where the 2D/layered crystal 
structure limits the possible defect configurations and the nanowire 
architecture puts single dislocations in close proximity to the entire host 
volume.1 While homogeneous layered nanowires carry individual screw 
dislocations, the synthesis of radial (core-shell) nanowire heterostructures 
transforms the defect into a mixed (helical) dislocation whose edge-to-
screw ratio is continuously tunable via the core–shell lattice mismatch. 

Such deterministic control over defects now enables the probing of 
functionality arising with single dislocations. For example, germanium 
sulfide van der Waals nanowires carrying single screw dislocations 
incorporate Eshelby twist and thus adopt a chiral twisted structure,2 which 
for the first time allowed the identification of chirality effects in the 
photonic properties of a single nanostructure.3 Using cathodoluminescence 
spectroscopy, whispering gallery modes could be excited and probed to 
directly compare the photonics of chiral and achiral segments in single 
nanowires. The data show systematic shifts in energy, which with the help 

of simulations are assigned to chiral whispering gallery modes in wires 
hosting a single dislocation. 

The ability to design nanomaterials containing individual dislocations with 
controlled geometry paves the way for identifying a broad range of 
functional properties of dislocations, with the potential to herald a 
paradigm shift from the traditional strategy of suppressing dislocations to 
embracing and harnessing them as core elements of new technologies. 

1. P. Sutter, R.R. Unocic, and E. Sutter, Journal of the American Chemical 
Society 145, 20503 (2023); DOI: 10.1021/jacs.3c06469 
2. P. Sutter, S. Wimer, and E. Sutter, Nature 570, 354 (2019); DOI: 
10.1038/s41586-019-1147-x 
3. P. Sutter, L. Khosravi-Khorashad, C.V. Ciobanu, and E. Sutter, Materials 
Horizons 10, 3830 (2023); DOI: 10.1039/D3MH00693J 
 

11:45am 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-16 Electrical 
Manipulation of Valley Polarized Charged Excitons in 2d Transition Metal 
Dichalcogenides, Kuan Eng Johnson Goh, Agency for Science Technology 
and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 
138634, Singapore 

The control of excitons in 2-dimensional (2D) Transition Metal 
Dichalcogenide (TMD) semiconductors is a key enabler for their use in 
optoelectronic, valleytronic and quantum applications. Reproducible 
electrical control of excitons remains elusive as excitons are intrinsically 
charge neutral quasiparticles. Here, we demonstrate that charge defects 
present in 2D TMDs like single-layer H-phase WS2 [1,2], could be 
advantageous for electrical control through the coherent coupling of the 
exciton or biexciton with intrinsic charges in the single-layer WS2, thus 
enabling a simple and robust method for electrical manipulation of the 
degree of valley polarization from <10% to >60% [3]. Such robust electrical 
tunability of the spectral resonance of the charged states indicates 
resonant control of valley polarization by exploiting the intricate interplay 
between the charged and neutral exciton/biexciton states, representing a 
key advance towards using the valley degree of freedom as an alternate 
information carrier.[4]. 
 

References 

[1] Bussolotti, F., et al., ACS Nano 15 (2021) 2686 

[2] Bussolotti, F., et al., ACS Nano 18 (2024) 8706 

[3] Das, S., et al., ACS Nano 18 (2024) 30805 

[4] Goh, K. E. J., et al., Advanced Quantum Technologies 3 (2020) 1900123 

12:00pm 2D+AQS+EM+MI+MN+NS+QS+SS+TF-ThM-17 Thickness 
Dependent Band Gap and Electrical Anisotropy of 2DSnSe, Marshall Frye, 
Jonathan Chin, Joshua Wahl, Jeremy Knight, Georgia Institute of 
Technology; Walter Smith, Purdue University; Dilara Sen, Samuel Kovach, 
Kenyon University; Frank Peiris, Kenyon College; Charles Paillard, University 
of Arkansas; Thomas Beechem, Purdue University; Anna Osterholm, Lauren 
Garten, Georgia Institute of Technology 

2D SnSe presents unique opportunities for optoelectronics, and scalable 
microelectronics, but it is first critical to understand how the electrical and 
optical response change upon downscaling. Tailoring the band gap and 
electrical anisotropy of 2D monochalcogenides, like SnSe, has previously 
been shown but the mechanisms that drive the changes in band gap are 
still not understood. This study revealshow changes in bond length and 
structure drive the thickness dependences of band gap, carrier mobility and 
lifetime of SnSe thin films.Molecular beam epitaxy is used to deposit (2h00) 
oriented SnSe thin films with thicknesses ranging from 4 nm to 80 nm. The 
direct band gap increases from 1.4 eV at 80 nm to 1.9 eV at 4 nm, 
underscoring the potential of SnSe as a tunable and direct band gap 
material for thin film optoelectronics. Raman spectroscopy showsdifferent 
simultaneously changes in the crystal structure and bonding occurring 
parallel versus perpendicular to the 2D plane with decreasing film 
thickness. TEM further supports the hypothesis that the increase in the 
band gap with reduced thickness is due to changes in crystal structure 
resulting in a contraction of the out-of-plane SnSe covalent bonds, while 
the in-plane bond length increases. In addition to the reduction in band 
gap, tracking the time dependent photoluminescence shows an increase in 
carrier lifetime with decreasing film thickness, while Hall measurements 
show a change in the carrier mobility with decreasing thickness. Overall, 
this work provides the critical missing insight needed to design these 
optically and electronically relevant2D materials for scalability. 
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