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8:00am AP+AS+EL+EM+PS+TF-ThM-1 Multiscale Simulations for Atomic 
Scale Processing, Michael Nolan, Tyndall Institute, Ireland INVITED 

In modern semiconductor device fabrication, the dimensions involved 
require atomic level control over materials deposition and etch. Atomic 
Level Processing, exemplified by Atomic Layer Deposition (ALD) and 
thermal atomic layer etch (tALE), is therefore critical deposition and etch of 
relevant materials. Further scaling and use of complex three-dimensional 
structures means that Thermal ALE will take centre stage in etching. The 
key chemistry takes place at surfaces which drives the self-limiting 
characteristics and other advantages of these atomic level processing 
approaches. In this presentationt I will discuss how atomistic simulations 
based on first principles Density Functional Theory, ab initio Molecular 
Dynamics and kinetic Monte Carlo methods can be used to predict the 
chemistry of atomic level deposition and etch processes. I will first discuss 
the key chemistries involved in atomic level processing chemistries and the 
challenges that we have identified in this exciting area.The first scientific 
topic is the simulation of plasma enhanced deposition (PE-ALD) of metals, 
using the example of cobalt for next generation interconnects. This is the 
first example of an atomistic level study of the full PE-ALD cycle for Co 
metal and show that the process requires use of ammonia or mixed H2/N2 
plasma. Calculated energy barriers for key steps give guidance regarding the 
temperatures required for the process. We show how substrate pre-
treatment can reduce nucleation delay and therefore allow selectivity in 
deposition of the target film. Finally we show how kinetic Monte Carlo can 
be used to predict the structure of deposited metal films on different 
nitride substrates using data from DFT level simulations.The second 
example is molecular layer deposition of hybrid materials, using alucone as 
the prototypical example. Comparison of aliphatic with functionalized 
aromatic molecules allows differences in film properties to be understood. 
A further application of this involves selective, templated deposition of 
target films using block co-polymer infiltration where differences in 
reactivity of a precursor in two polymers promotes selective deposition of 
the target films. Finally, I present our work on self-limiting thermal atomic 
layer etching (ALE), highlighting how simulations can (1) predict the window 
of self-limiting etch (2) unravel the difference between amorphous and 
crystalline substrates and (3) probe the impact of surface orientation on 
tALE chemistry, all of which are important for future, selective thermal ALE 
processing on complex 3D substrates. 

8:30am AP+AS+EL+EM+PS+TF-ThM-3 The Si-Cl2-Ar+ Atomic Layer Etching 
Window: Fundamental Insights from Molecular Dynamics Simulations and 
a Reduced Order Model, Joseph Vella, TEL Technology Center, America, 
LLC, USA; David Graves, Department of Chemical and Biological Engineering 
Princeton University 

Plasma assisted atomic-layer etching (ALE) processes are frequently 
characterized by the ALE window. This is a range of ion energies where the 
amount of substrate etched remains constant as a function of the ion 
energy. Silicon (Si) etch by alternating exposure to chlorine gas (Cl2) and 
argon ions (Ar+) is frequently used as a demonstrative example to illustrate 
concepts of ALE, including the ALE window.[1] Despite this, when 
examining the literature, properties of the ALE window for this system 
remain obscure. For example, Kim et al.[2] studied Si-Cl2-Ar+ ALE and report 
that the ALE window should be below 40 eV. On the other hand, Park et 
al.[3] report the ALE window as being from 70 to 90 eV. Still others report 
an Ar+ ion energy of 50 eV as being within the ALE window.[4] In this talk, 
we aim to resolve these contradictory reports by studying the Si-Cl2-Ar+ ALE 
with classical molecular dynamics (MD) simulations and a reduced order 
model (ROM).[5] The MD results show that the range of Ar+ ion energies 
where the amount of Si etched per cycle (EPC) remains relatively constant is 
from 15eV to 20 eV, which is very narrow. The EPC in this region is also less 
than one atomic layer, because atomic Cl sputtering is significant. The 
results also show that a large ion fluence (roughly 4.2 1016 ions/cm2 for 15 
eV ions) is required to remove all Cl from the near surface region, which is a 
key insight when developing processes that achieve “true ALE”. Using the 
ROM, parameters can be varied to observe their effect on properties of the 

ALE window. For example, by increasing the threshold sputtering energy of 
Si, the width of ALE window can be increased. While this study focuses on 
the relatively simple Si-Cl2-Ar+ system, it is clear learnings from this study 
can be extended to other systems. 
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8:45am AP+AS+EL+EM+PS+TF-ThM-4 Influence of Fluorination and 
Oxygenation Sources on the Thermal Atomic Layer Etching of MoS2, Jacob 
A. Tenorio, Icelene Leong, John D. Hues, Steven M. Hues, Elton Graugnard, 
Boise State University 

Atomic layer etching (ALE) has emerged as a pivotal technique in the 
precise fabrication of two-dimensional (2D) materials, particularly 
molybdenum disulfide (MoS2), which holds promise in the semiconductor 
industry due to its high mobility in monolayer form. The ability to precisely 
etch amorphous and crystalline MoS2 films provides a pathway for 
controlling thickness, which is critical to achieving desired electrical and 
optical properties. Previous studies used MoF6 and H2O in thermal ALE of 
MoS2. Here, we report studies of alternate sources of fluorination and 
oxygenation and evaluate their impact on thermal ALE of MoS2. Oxygen 
sources include water and ozone, and fluorine sources include HF/Pyridine 
and MoF6. Etch rates, uniformity, and surface chemistry post ALE were 
characterized using spectroscopic ellipsometry, atomic force microscopy, 
and X-ray photoelectron spectroscopy. Results indicated at ALE of 
amorphous MoS2 with HF with either H2O or O3 showed no signs of etching 
at 200 ºC or 250 ºC. Whereas the combination of MoF6 + O3 at 250 ºC on 
amorphous MoS2 films exhibited an etch rate of 1.6 Å/cycle and a mass loss 
of 44 ng/cm2. Further MoF6 + O3 etching at 200 ºC showed a mass loss of 19 
ng/cm2, similar to prior reports using MoF6 + H2O at 200 ºC. Surface 
morphology showed little change from etching, but surface oxygen 
concentration increased. This research further expands the capabilities for 
atomic layer processing of 2D materials. 

9:00am AP+AS+EL+EM+PS+TF-ThM-5 Insights Into Atomic Layer Etching of 
Diamond Surfaces, Jack Draney, Athanassios Panagiotopoulos, David 
Graves, Princeton University 

Thanks to its nitrogen vacancy color centers, diamond is a candidate for 
many quantum applications from quantum sensing to quantum computing. 
Pristine surfaces engineered for each application are required for good 
device performance. We investigated atomic-scale plasma processing as a 
method for reaching these pristine diamond surfaces. Our investigation 
takes the form of combined experiments and molecular dynamics 
simulations, allowing atomic-scale insights into the effects of argon / 
oxygen atomic layer etching on diamond surfaces. 

9:15am AP+AS+EL+EM+PS+TF-ThM-6 Benchmarking Large Language 
Models for Atomic Layer Deposition, Angel Yanguas-Gil, Matthew T. 
Dearing, Jeffrey W. Elam, Jessica C. Jones, Sungjoon Kim, Adnan 
Mohammad, Chi Thang Nguyen, Bratin Sengupta, Argonne National 
Laboratory 

In this work we introduce an open-ended question benchmark, ALDbench, 
to evaluate the performance of large language models (LLMs) in the field of 
atomic layer deposition. Our benchmark comprises questions with a level of 
difficulty ranging from graduate level to domain expert current with the 
state of the art in the field. Human experts reviewed the questions along 
the criteria of difficulty and specificity, and the model responses along four 
different criteria: overall quality, specificity, relevance, and accuracy. We ran 
this benchmark on an instance of OpenAI's GPT-4o using an API interface. 
This allows us to fine tune hyperparameters used by the LLM for text 
generation in a way that is not possible using conventional chat-based 
interfaces. 
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The responses from the model received a composite quality score of 3.7 on 
a 1 to 5 scale, consistent with a passing grade. However, 36% of the 
questions received at least one below average score. An in-depth analysis 
of the responses identified at least five instances of suspected 
hallucination. We also observed statistically significant correlations 
between the following question and response evaluation criteria: difficulty 
of the question and quality of the response, difficulty of the question and 
relevance of the response, and specificity of the question and the accuracy 
of the response. Finally, we will address other issues such as reproducibility, 
impact of hyperparameters on the quality of the response, and possible 
ways in which the performance of the LLMs can be further improved. 

[1] A. Yanguas-Gil et al, J. Vac. Sci. Technol. A 43, 032406 (2025) 

9:30am AP+AS+EL+EM+PS+TF-ThM-7 Developing a “Digital Twin” for 
Area-Selective Deposition on 3D Nanopatterns, Nicholas Carroll, Gregory 
Parsons, North Carolina State University 

Area-selective deposition (ASD)—a bottom-up patterning technique that 
enables precise material deposition on specific regions while preventing 
deposition elsewhere—has garnered significant attention as an 
augmentation to lithographic patterning of nanoscale features during 
semiconductor manufacturing. Some potential applications, such as 
contact-over-active-gate, will require multiple ASD materials to be 
deposited in sequence, heightening the challenge of effective process 
design. Given the vast time and resources required for experimental 
assessments of process integration, demand is rapidly growing for a “digital 
twin” (i.e. a software representation of a physical system) of device 
fabrication sequences. A comprehensive ASD digital twin will require 
advances in analyzing atomic layer deposition (ALD) reactor design and 
mechanistic insights into interactions between inhibitor molecules, ALD 
reactants, and substrate surfaces over time as reactions proceed. 

We have recently developed a stochastic lattice model describing metal 
oxide ASD on planar substrates, including means to visualize the film shape 
and extent of lateral overgrowth during ASD.[1] Parameters in the model can 
be adjusted based on steric hindrance during each half-cycle, differences in 
interfacial energies between the non-growth surface and the growing film, 
and the preferred molecular bonding orientations. These factors elucidate 
subtleties in shape evolution during ASD, but results to date have been 
limited to vertical and lateral growth on 2D surfaces. A functional ASD 
digital twin must describe ASD on arbitrary 3D nanopatterns and on sub-
lithographic feature sizes, including effects of selectivity loss where the 
selectivity decreases as film thickness increases. 

We will present recent efforts in our group to extend the functionality of 
the stochastic lattice model to describe ASD on 3D substrates, including 
surfaces with pattern dimensions less than 10 nm. On very small features, 
for example, the model shows that lateral growth during ASD results in a 
wide distribution of feature separation distances, even when the growth 
per cycle is uniform across a growing film surface. We will also discuss 
intricacies that need to be considered to integrate multiple ASD steps into 
processes involving more complex “multi-color” substrates where several 
substrate materials exposed to reactants simultaneously. We believe that 
such insight will be critical for the realization of a functional digital twin 
model of atomic-scale processing needed for future semiconductor devices 
and other advanced manufacturing processes. 

(1) Carroll, N. M.; Parsons, G. N. J. Vac. Sci. Technol. A 42 (6), 062411 (2024). 

9:45am AP+AS+EL+EM+PS+TF-ThM-8 Activation of C-X Bonds on 
Transition Metal Surfaces: Insight from DFT Studies, Matias Picuntureo, 
Universidad Tecnica Federico Santa Maria, Chile; Ilker Tezsevin, Marc Merkx, 
Eindhoven University of Technology, The Netherlands; Scott Semproni, Jiun-
Ruey Chen, Intel Corporation; Adriaan Mackus, Eindhoven University of 
Technology, The Netherlands; Tania Sandoval, Universidad Tecnica Federico 
Santa Maria, Chile 

Area-selective atomic layer deposition (AS-ALD) represents an advanced 
bottom-up nanofabrication technique enabling selective material growth 
on targeted areas of patterned substrates. In advanced semiconductor 
manufacturing, such as next-generation processes at the back end of line 
(BEOL), small molecule inhibitors (SMIs) can enable AS-ALD through the 
selective formation of inhibitor layers on metal surfaces that block 
deposition. 
A recent study by Merkx et al. reported hydrogenolysis and potentially 
dehydrogenation of aniline on Ru surfaces during AS-ALD, leading to the 
formation of a carbonaceous layer with enhanced inhibition performance. 
This highlights the importance of understanding the driving forces behind 
the surface chemistry of SMIs. 

To explore whether similar surface-mediated reactions can occur for other 
inhibitor–metal combinations, we employ density functional theory (DFT) 
to investigate the adsorption and dissociation mechanisms of benzene-
derived SMIs on Ru(0001), Mo(110), and W(110) surfaces. 
To enable a systematic comparison across different molecules and surfaces, 
our study focuses on radical-mediated dissociation pathways involving the 
cleavage of functional groups from the aromatic ring. This approach allows 
us to isolate the effect of the functional group and its interaction with the 
metal surface in determining the reaction thermodynamics between the 
molecular and dissociated adsorbed states. 
We find that charge transfer to the adsorbed inhibitor modulates its 
dissociation energy landscape. The resulting radical intermediates are 
substantially stabilized through coordination with the metal surface. We 
further explore their subsequent hydrogenation, which transforms these 
surface-bound radicals into more stable, saturated species. Lastly, we show 
that the fate of reaction by-products—whether they remain adsorbed or 
desorb into the gas phase—can significantly impact the overall reaction 
thermodynamics and shift the equilibrium toward or away from product 
formation. 
The investigation of the reaction pathways explored in this study 
contributes to the fundamental understanding of molecule–surface 
interactions during AS-ALD and offers insight that may support future 
strategies for the rational design of small molecule inhibitors. 
References: 
[1] Merkx et al., J. Chem. Phys. 160, 2024. 
 

11:00am AP+AS+EL+EM+PS+TF-ThM-13 Descriptor-driven analysis of 
inhibitors for AS-ALD processes, Joost F. W. Maas, Marc J. M. Merkx, 
Eindhoven University of Technology, Netherlands; Matías Picuntureo, Lucas 
Lodeiro, Universidad Tecnica Federico Santa Maria, Chile; Adriaan J. M. 
Mackus, Eindhoven University of Technology, Netherlands; Tania E. 
Sandoval, Universidad Tecnica Federico Santa Maria, Chile 

Area selective atomic layer deposition (AS-ALD) is a bottom-up technique 
that can address some of the challenges that limit the nanofabrication of 
complex structures, which require patterning and alignment at the atomic 
scale. Currently, one of the most robust strategies to carry out AS-ALD is 
with the use of small molecule inhibitors (SMIs), that selectively adsorb and 
inhibit the non-growth surface (NGS) and prevent precursor adsorption. 
These SMIs range from a variety of functionalities and structures depending 
on the target NGS, and their selection is based on specific criteria, such as 
reactivity, volatility, and safety.1,2 

Currently, the library of tested inhibitor molecules is very limited, therefore 
finding the best candidate for a given surface is challenging. Using 
computational tools can significantly accelerate the expansion of this library 
through high-throughput screening and recent advances in machine 
learning. In the case of the use of descriptors,3 the goal is to correlate the 
performance of the SMIs e.g., measured in terms of their stability, as 
adsorption energy, with the dependence on materials or molecular 
properties. The derived correlations can serve to establish general 
guidelines for SMI selection, expanding the analysis to other molecules not 
included in the initial study. This approach has proven to be very successful 
in reducing computational costs in other fields, such as heterogeneous 
catalysis and drug discovery. 

In this presentation, we provide an overview of the dependency between a 
list of descriptors and the adsorption energies of SMIs candidates on a 
variety of relevant NGS, such as oxides, nitrides, and metals. We explore 
descriptors based on the molecular properties, such as electronegativity, 
electrophilicity, and orbital energy, as well as descriptors based on the 
electronic structure of the material, such as d-band center. Results indicate 
a with strong correlation with the adsorption energy (Eads) and 
electronegativity of the core-atom on the adsorption of oxides and nitrides, 
as well as the d-band center on the adsorption on metal surfaces. 
Moreover, our data highlights the differences in reactivity across surfaces 
and the challenges in surface passivation across surfaces with similar 
surface sites. Overall, this study provides important insights into the use of 
descriptor-driven analysis in the selection of the right SMI candidates for 
the advancement of ASD processes. 

[1] A. Mameli and A. Teplyakov Acc. Chem. Res. 2023, 56, 2084−2095. 

[2] P. Yu, et al. Appl. Surf. Sci. 2024, 665, 160141. 

[3] C. Chen, et al. J. Phys. Chem. C 2025, 129, 13, 6245–6253. 
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11:15am AP+AS+EL+EM+PS+TF-ThM-14 Understanding Plasma-Induced 
Bonding and Composition Changes in SiCN ALD via kMC–DFT Modeling, 
Ting-Ya Wang, University of Texas at Austin; Hu Li, Peter Ventzek, Tokyo 
Electron America; Gyeong Hwang, University of Texas at Austin; Jianping 
Zhao, Tokyo Electron America 

Plasma-enhanced atomic layer deposition (PEALD) enables low-
temperature processing of silicon carbonitride (SiCN), a critical low-k 
material for advanced interconnects. However, energetic plasma species—
including both ions and radicals—can significantly influence surface 
reactions, film composition, and structural evolution, ultimately affecting 
material properties such as dielectric constant and mechanical strength. A 
comprehensive understanding of these species-specific effects is essential 
for process optimization. 

Integrating kinetic Monte Carlo (kMC) with density functional theory (DFT) 
offers a powerful approach for simulating ALD. However, a key challenge in 
kMC lies in the need for a predefined list of permissible events. 
Traditionally, researchers manually compile a set of reactions deemed most 
significant. Yet, the vast number of possible events on a surface, combined 
with the importance of rare events in ALD, raises concerns about the 
authenticity and completeness of outcomes derived from manually curated 
reaction lists. 

To address this, we developed an atomistic, off-lattice, three-dimensional 
simulator that integrates kMC with DFT. We employed a strategic approach 
to construct a comprehensive event list, capturing a broad spectrum of 
potential surface reactions. This year, we expand our study in four key 
directions: (1) comparison of ion- and radical-driven reaction pathways to 
delineate their distinct roles in modifying surface chemistry; (2) evaluation 
of different plasma chemistries (e.g., N₂ vs. NH₃) to understand how 
reactive species impact film stoichiometry and termination; (3) simulation 
of multi-cycle growth to track the evolution of defects and compositional 
shifts; and (4) simulation predictions against experimental data such as XPS 
and IR spectra. 

Our findings reveal a synergistic interplay between ions and radicals in 
shaping the formation of Si–N, Si–C, and C–N bonding networks. The 
simulation platform enables insights into plasma–surface interactions, 
offering a predictive framework for optimizing SiCN PEALD processes. 

11:30am AP+AS+EL+EM+PS+TF-ThM-15 Understanding SiCN Film 
Oxidation Mechanism Through Density Functional Theory, Tsung-Hsuan 
Yang, Hu Li, Jianping Zhao, Peter Ventzek, Tokyo Electron America 

Low dielectric constant (low-k) spacers are essential components in 
advanced microelectronic devices for mitigating parasitic capacitance and 
crosstalk, leading to enhanced device performance. Among low-k materials, 
silicon carbon nitride (SiCN) is widely used for its tunability in dielectric 
constant, leakage current and chemical robustness. However, the long-term 
stability of SiCN films is often compromised by atmospheric moisture, 
leading to the formation of silicon oxide. To address this issue, we utilize 
density functional theory (DFT) to elucidate the fundamental oxidation 
mechanisms of SiN and SiC components by H₂O. Reaction rates were 
estimated with a combination of transition state theory and Arrhenius 
equation, enabling prediction of oxidation rates under various processing 
conditions. Additionally, H₂O diffusion within SiCN films was modeled, 
demonstrating a direct correlation between film density and oxidation 
kinetics. More importantly, the findings in this work can be applied in 
depositing SiOCN film as the oxidation mechanisms are predicted to be 
similar with other oxidation agents. Knowledge of these oxidation 
mechanisms enables precise control of the SiOCN film deposition process, 
facilitating component tunability. 

11:45am AP+AS+EL+EM+PS+TF-ThM-16 From Bulk Titanium Nitride to 
Small Molecule Inhibitors: a DFT Study Aiming Towards Area-Selective 
Atomic Layer Deposition, Lucas Lodeiro, Universidad Tecnica Federico 
Santa Maria, Chile; Marc J. M. Merkx, Eindhoven University of Technology, 
The Netherlands; Dennis M. Hausmann, Rachel A. Nye de Castro, LAM 
Research; Adriaan J. M. Mackus, Eindhoven University of Technology, The 
Netherlands; Tania E. Sandoval, Universidad Tecnica Federico Santa Maria, 
Chile 

Titanium Nitride (TiN) is a hard and inert ceramic used as a protective 
coating, and in microelectronics for its metallic behavior. TiN thin films 
improve devices performance as conductive connection and diffusion 
barrier, and can be further functionalized to promote specific applications. 
Atomic Layer Deposition (ALD) enables precise TiN film deposition, with 
temperature controlling crystal growth facet. However, achieving area-
selective ALD (AS-ALD) on TiN is challenging, because the lack of 
information of surface groups present in deposited TiN, requiring reliable 

surface models to search for solutions for precursor selectivity and 
inhibition with Small Molecule Inhibitors (SMIs) at atomic scale. 

This study uses Density Functional Theory (DFT) to examine TiN surface 
properties, crystal facets, and surface chemistry. It also explores the 
adsorption of various organic and inorganic precursor (Al, Si, Ti-based) and 
SMI (aryl, aldehyde, and nitrogen-based) molecules on TiN with the aim of 
studying their potential for AS-ALD processes with TiN as growth or non-
growth area. 

Our findings on crystal facets align with experimental data, showing the 
(001) facet is the most stable, followed by the (111) facet, which is 
observed at high deposition temperature.[1] The reactivity and 
functionalization strategies of these surfaces differ significantly. The (001) 
surface shows low reactivity (especially with H2O, NH3, and H2), resulting in 
bare surface sites.[2] Conversely, the (111) surface is reactive and can 
undergo hydrogenation, altering its electronic properties. 

The differences in electronic surface properties significantly affect surface 
chemistry and the adsorption mechanism of the different molecules. The 
(001) surface exhibits metallic behavior, with strong interactions with 
various functional groups (for example, -1.8 eV for Benzaldehyde, BA), 
similar to copper surfaces.[3] In contrast, adsorption on the (111) surface is 
weaker and mainly dispersive (-0.8 eV for BA), highlighting the importance 
of the TiN film facet. Experimental findings show enhanced inhibition of BA 
and higher selectivity for low temperature deposited TiN, which could 
indicate the presence of the (001) surface, and a more stable inhibitor 
adsorption. 

The key findings of this study offer valuable insights into surface reactivity 
and electronic properties to use TiN in AS-ALD process. Ultimately, this 
work aims to provide insights into controlling TiN deposition at the 
nanoscale, opening avenues for advanced microfabrication and surface 
engineering applications. 

[1] Met. Mater. Int. 2001, 7, 621–625. 

[2] J. Phys. Chem. C 2013, 117, 38, 19442–19453. 

[3] Chem. Mater. 2025, 37, 1, 139–152. 

12:00pm AP+AS+EL+EM+PS+TF-ThM-17 Trimethylaluminum Reactivity on 
SiO2 Surfaces at Cryogenic Temperatures – Implications for Al2O3 ALD, 
Leonhard Winter, Ravi Ranjan, Francisco Zaera, University of California, 
Riverside 

The atomic layer deposition (ALD) of aluminum oxide films on solid 
substrates using trimethylaluminum (TMA) and water is often considered a 
prototypical ALD process. Several investigations have attempted to 
understand the mechanistic details of this deposition by following the 
corresponding steps in situ under reaction conditions. To gain a more 
fundamental understanding, we have set out to study this system following 
a UHV surface-science approach, slowing down the reaction, decreasing the 
gas exposures and substrate temperature, and following the progress of the 
reactions using surface science techniques. We chose to study this 
chemistry on SiO2 films grown in situ onto a Ta support because SiO2 is one 
of the most common substrates in the microelectronics industry. 
We investigated the adsorption and reaction of TMA with SiO2 by using X-
ray photoelectron spectroscopy (XPS) and temperature-programmed 
desorption (TPD). We found that TMA starts to react with the SiO2 surface 
at ≈110 K, i.e. below the cryogenic temperatures required for multilayer 
condensation. This low-temperature chemistry appears to be complex, as 
multiple reaction pathways can be deduced from analysis of the TPD data. 
In addition to the expected product methane, we observed the formation 
of ethylene and heavier fragments, probably also containing Al. The 
complex behavior of TMA on SiO2 is not limited to low temperatures, as the 
loss of alkyl groups continues over several hundred kelvins upon heating of 
the sample. Isothermal adsorption experiments show that at room 
temperature the TMA uptake is self-limiting with an initial sticking 
coefficient that is approximately 4-5 times smaller than at cryogenic 
temperatures, where multilayer growth occurs. To model ALD-type growth, 
we alternately dosed TMA and water at 200 K and followed the chemical 
composition of the surface with XPS. The results are in agreement with the 
expected ALD behavior, which shows that ALD growth is possible at these 
extremely low temperatures for the TMA/water system. The two precursors 
were also co-dosed in a CVD-type deposition, which results in the growth of 
multilayer films of aluminum oxide on the SiO2 substrate. Surprisingly, the 
growth was observed to proceed faster at 200 K than at room temperature, 
which we explain by a kinetic effect of prolonged residence times of the 
precursors at lower surface temperatures. 
 



Author Index 

Author Index 4 Bold page indicates presenter 

Bold page numbers indicate presenter 
— C — 
Carroll, Nicholas: AP+AS+EL+EM+PS+TF-

ThM-7, 2 
Chen, Jiun-Ruey: AP+AS+EL+EM+PS+TF-ThM-

8, 2 
— D — 
Dearing, Matthew T.: AP+AS+EL+EM+PS+TF-

ThM-6, 1 
Draney, Jack: AP+AS+EL+EM+PS+TF-ThM-5, 1 
— E — 
Elam, Jeffrey W.: AP+AS+EL+EM+PS+TF-ThM-

6, 1 
— G — 
Graugnard, Elton: AP+AS+EL+EM+PS+TF-

ThM-4, 1 
Graves, David: AP+AS+EL+EM+PS+TF-ThM-3, 

1; AP+AS+EL+EM+PS+TF-ThM-5, 1 
— H — 
Hausmann, Dennis M.: 

AP+AS+EL+EM+PS+TF-ThM-16, 3 
Hues, John D.: AP+AS+EL+EM+PS+TF-ThM-4, 

1 
Hues, Steven M.: AP+AS+EL+EM+PS+TF-

ThM-4, 1 
Hwang, Gyeong: AP+AS+EL+EM+PS+TF-ThM-

14, 3 
— J — 
Jones, Jessica C.: AP+AS+EL+EM+PS+TF-ThM-

6, 1 
— K — 
Kim, Sungjoon: AP+AS+EL+EM+PS+TF-ThM-

6, 1 
— L — 
Leong, Icelene: AP+AS+EL+EM+PS+TF-ThM-

4, 1 
Li, Hu: AP+AS+EL+EM+PS+TF-ThM-14, 3; 

AP+AS+EL+EM+PS+TF-ThM-15, 3 

Lodeiro, Lucas: AP+AS+EL+EM+PS+TF-ThM-
13, 2; AP+AS+EL+EM+PS+TF-ThM-16, 3 

— M — 
Maas, Joost F. W.: AP+AS+EL+EM+PS+TF-

ThM-13, 2 
Mackus, Adriaan: AP+AS+EL+EM+PS+TF-

ThM-8, 2 
Mackus, Adriaan J. M.: 

AP+AS+EL+EM+PS+TF-ThM-13, 2; 
AP+AS+EL+EM+PS+TF-ThM-16, 3 

Merkx, Marc: AP+AS+EL+EM+PS+TF-ThM-8, 
2 

Merkx, Marc J. M.: AP+AS+EL+EM+PS+TF-
ThM-13, 2; AP+AS+EL+EM+PS+TF-ThM-16, 
3 

Mohammad, Adnan: AP+AS+EL+EM+PS+TF-
ThM-6, 1 

— N — 
Nguyen, Chi Thang: AP+AS+EL+EM+PS+TF-

ThM-6, 1 
Nolan, Michael: AP+AS+EL+EM+PS+TF-ThM-

1, 1 
Nye de Castro, Rachel A.: 

AP+AS+EL+EM+PS+TF-ThM-16, 3 
— P — 
Panagiotopoulos, Athanassios: 

AP+AS+EL+EM+PS+TF-ThM-5, 1 
Parsons, Gregory: AP+AS+EL+EM+PS+TF-

ThM-7, 2 
Picuntureo, Matias: AP+AS+EL+EM+PS+TF-

ThM-8, 2 
Picuntureo, Matías: AP+AS+EL+EM+PS+TF-

ThM-13, 2 
— R — 
Ranjan, Ravi: AP+AS+EL+EM+PS+TF-ThM-17, 

3 

— S — 
Sandoval, Tania: AP+AS+EL+EM+PS+TF-ThM-

8, 2 
Sandoval, Tania E.: AP+AS+EL+EM+PS+TF-

ThM-13, 2; AP+AS+EL+EM+PS+TF-ThM-16, 
3 

Semproni, Scott: AP+AS+EL+EM+PS+TF-ThM-
8, 2 

Sengupta, Bratin: AP+AS+EL+EM+PS+TF-
ThM-6, 1 

— T — 
Tenorio, Jacob A.: AP+AS+EL+EM+PS+TF-

ThM-4, 1 
Tezsevin, Ilker: AP+AS+EL+EM+PS+TF-ThM-8, 

2 
— V — 
Vella, Joseph: AP+AS+EL+EM+PS+TF-ThM-3, 

1 
Ventzek, Peter: AP+AS+EL+EM+PS+TF-ThM-

14, 3; AP+AS+EL+EM+PS+TF-ThM-15, 3 
— W — 
Wang, Ting-Ya: AP+AS+EL+EM+PS+TF-ThM-

14, 3 
Winter, Leonhard: AP+AS+EL+EM+PS+TF-

ThM-17, 3 
— Y — 
Yang, Tsung-Hsuan: AP+AS+EL+EM+PS+TF-

ThM-15, 3 
Yanguas-Gil, Angel: AP+AS+EL+EM+PS+TF-

ThM-6, 1 
— Z — 
Zaera, Francisco: AP+AS+EL+EM+PS+TF-ThM-

17, 3 
Zhao, Jianping: AP+AS+EL+EM+PS+TF-ThM-

14, 3; AP+AS+EL+EM+PS+TF-ThM-15, 3 

 


