Supplementary Document

Figure 1. Illustration of packaged MEMS resonator, highlighting the impact of induced stress. (a) Baseline resonator; (b) Resonator with Isolation Frame.

Design and Fabrication

Port 2 $FP \sim Th$ Mo AIN Si Fr Mo AIN Si Fr FrF

Figure 2. Conceptual schematic of a thickness-Lamé mode resonator (top) and its resonance mode shape (displacement) simulated by COMSOL (bottom).

Figure 3. Simplified fabrication process flow of the TLM resonator.

Figure 4. Measured frequency response of a typical thicknesslamé mode resonator with isolation frame. The Q is on average increased by a factor of 2.8.

Figure 5. Stress inducing measurement set-up: (a) before bending; (b) after bending (applied stress points are highlighted).

Table 1. Measured f.Q products, frequency shifts (ΔF), and curvatures (K) for different configurations of the devices under study.

<u>Baseline</u>	SEM			
	f.Q (THz)	1.2	0.9	0.8
	$\Delta F (ppm)$	28.23	75.85	125.35
	K (degree)	0.374	0.395	0.249
Isolation Frame	SEM		L.	
	f.Q (THz)	3.1	2.6	2.5
	ΔF (ppm)	4.58	10.97	7.79
	K (degree)	0.178	0.035	0.132