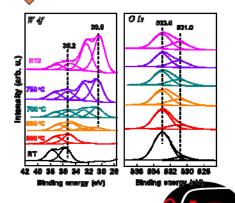

Experimental *In situ* **XRD-MS**

Online MS



In situ XPS

Yang, Y.; Zebang, L.; Li, J.P.H.; Evgeny, V. Reaction control and mass spectrometry workstation for coupling an X-ray spectroscopic characterization instrument with an in-situ reaction cell. 2022.

Discussion Ti-NaWMnSi

XRD and XPS results of Mn and W at different temperatures and different atmosphere conditions

* In situ treatment in HPGC, the spectrum is collected after cooling down to RT

		Species	Heating			Temperature	Cooling				
	Atmosphere		550 ~ 60	00 630	6:	50 I	680 690	700	730	252	RT
Sealed vacuum capillary	Oxidant exposure	Mn compound	Mn ³⁺						•		
		Nu ₂ WO ₄	Cubic		Ortho	orhombic			Molten		
Flowing Ar	Inert	Mn compound	Mn ³⁺				Unknown species	~	Mn ²⁺	Mn ²⁺	Mn³·
		Na ₂ WO ₄	Cubic		(W ⁶⁺)	Orthorhombic (W ^{6-\delta} , W ⁶⁺)			Molten	Ineversible	W6- W6-8
Flowing OCM reactants	Slightly reductive and oxidative	Mn compound	Mn ³⁺ (Mn ²⁺)	Unknown species					Mn ²⁺ (Mn ³⁺)	Mn ²⁺	Mn³-
		Na ₂ WO ₄	Cubic	Orthorhombic					Molten	Cubic	W6-
In situ XRD / XPS											XPS*

- ➤ The reduction from Mn³+ to Mn²+ is favored by inert or slightly reductive gas exposure while a high temperature (> 650 °C) is always required.
- ➤ It also shows that to inhibit Mn³+ reduction to Mn²+ at the same high temperature, or to reverse the reduced Mn²+ to Mn³+, slightly oxidative exposure other than inert gas must be provided.
- > The "unidentified species" should be related with the complex catalyst components and is a transition state which can only be observed at high temperature.
- W self reduction observed after melting under inert condition.

