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8:15am SS+AMS+AS+CA+LS-FrM-1 Infrared Spectroscopy as a Surface 
Science Technique, Michael Trenary, University of Illinois - Chicago INVITED 

Infrared spectroscopy is widely used to probe the vibrational properties of 
molecules in the gas, liquid, and solid phases. On the other hand, precise 
information on the structure and chemistry of solid surfaces, and of 
molecular adsorbates on solid surfaces, is best gained through use of 
surface science methods. These methods generally entail the use of single 
crystals, ultrahigh vacuum conditions, and surface sensitive techniques. 
Reflection absorption infrared spectroscopy (RAIRS) is a surface sensitive 
technique that can be used in ultrahigh vacuum to study molecular 
adsorption on well characterized metal single crystal samples. Unlike many 
other surface science methods, it can also be used under elevated gas 
pressures. The spectra obtained display features that are quite distinct from 
those of other phases of matter. For example, in the gas phase, rotational 
fine structure greatly complicates the appearance of the spectra but is 
absent in the spectra of adsorbed molecules. In the liquid phase, spectra 
are broadened by both static and dynamic effects often making it difficult 
to resolve vibrational peaks due to different chemical species. In 
polycrystalline molecular solids, molecules are randomly oriented relative 
to the electric field directions of the infrared radiation, limiting the value of 
the spectra as a structural probe. In contrast, when molecules adsorb on 
metal surfaces, they often adopt a definite orientation with respect to the 
surface normal. This orientation can be deduced through the surface dipole 
selection rule, which states that only normal modes with a component of 
the dynamic dipole moment oriented along the surface normal will be 
allowed. While IR spectroscopy in several forms has long been used to 
study molecular adsorption on supported transition metal catalysts, the 
high degree of heterogeneity of the catalyst surfaces leads to very broad 
peaks, with full width at half maxima (FWHM) of 10-50 cm-1. In contrast, 
the FWHM of peaks measured with RAIRS on well-ordered metal surfaces 
can be quite narrow, in some cases even less than 1 cm-1. When a 
polyatomic molecule exhibits sharp peaks throughout the mid-IR range, the 
advantages of performing RAIRS with a Fourier transform infrared 
spectrometer are most pronounced. This talk will cover the speaker’s forty 
years of research using the technique of RAIRS to study molecular 
adsorbates on metal surfaces. 

8:45am SS+AMS+AS+CA+LS-FrM-3 Modeling Pipeline Surface Chemistry: 
Reaction of Monochloramine on Iron Surfaces, Kathryn Perrine, S. Pandey, 
O. Agbelusi, Michigan Technological University 

Monochloramine (NH2Cl), a secondary disinfectant, is utilized to treat 
pathogens in the municipal water system, producing fewer halogenated 
disinfection by-products and lasting longer than free chlorine 
(hypochlorite). Although a weaker oxidant, NH2Cl has the potential to 
corrode the surface of pipeline materials resulting in the dissolution of 
unwanted species. Copper and lead pipelines have been shown to corrode 
in chloramine solutions, however on iron materials the surface chemistry is 
unexplored. Complex chemistry occurs on the surface of pipelines at 
solution/metal interfaces, thus providing catalytic sites for dissociation, 
decomposition, and degradation. Iron comprises distribution pipelines and 
also exists as oxides in soils in the natural environment. Redox reactions 
occur on the surface of iron materials, thus initiating surface corrosion. 
Here, various active sites on iron are produced and known for high 
reactivity with nitrogen compounds. Our group employs a surface science 
approach to uncovering mechanisms at complex interfaces. 

In this study, the reaction of monochloramine (NH2Cl) was investigated on 
single crystal Fe(111) in ultra-high vacuum at the gas/solid interface using in 
situ infrared reflection absorption spectroscopy and Auger electron 
spectroscopy. At -160 °C, NH2Cl molecularly adsorbs to the surface while 
the annealing leads to the loss of key vibrational modes, suggesting that 
either molecular desorption or dissociation occurs. These observations are 
contrasted with our findings at the solution/iron interface, where polarized 
modulated infrared reflection absorption spectroscopy (PM-IRRAS), ATR-
FTIR, XPS, and XRD were used to assess the various regions after corrosion 
and their film growth. In solution, localized heterogeneous corrosion 

products were observed and identified, suggesting different reaction 
pathways exist in strongly oxidizing solutions. These findings are important 
for understanding the mechanism of chloramines and water disinfectants 
on iron interfaces relevant for water quality, material degradation, and 
other complex environmental processes. 

9:00am SS+AMS+AS+CA+LS-FrM-4 Development of Tip-Enhanced Raman 
Spectroscopy for Solid-Liquid Interfaces, Naihao Chiang, University of 
Houston 

Tip-enhanced Raman spectroscopy (TERS) combines the spatial resolution 
of scanning probe microscopy (SPM) with the chemical sensitivity of Raman 
spectroscopy. TERS with sub-nanometer resolution has been demonstrated 
under ultrahigh vacuum conditions. We aim to extend this unprecedented 
chemical mapping capability to interfacial studies under the solution phase. 
Specifically, we have developed a scanning ion-conductance microscope for 
TERS (SICM-TERS) capable of interrogating soft samples. In this 
presentation, the instrumental design will be discussed first. SICM-TERS 
probe fabrication and evaluation will be followed. Then, a distance-
dependent SICM-TERS measurement on two-dimensional MoS2 sheets will 
be used to assess the strain created by the SICM probe in close proximity. 
Our results demonstrate the potential of combining TERS with SICM for 
obtaining chemical information at interfaces, thus setting the stage for 
future investigation into soft materials in electrolytic environments. 

9:15am SS+AMS+AS+CA+LS-FrM-5 Ion Based Pump-Probe: Probing the 
Dynamics Following an Ion Impact, Lars Breuer, L. Kalkhoff, A. Meyer, N. 
Junker, L. Lasnik, Universität Duisburg-Essen, Germany; Y. Yao, A. Schleife, 
University of Illinois at Urbana Champaign; K. Sokolowski-Tinten, A. Wucher, 
M. Schleberger, Universität Duisburg-Essen, Germany 

The study of ion-surface interactions is crucial for understanding material 
properties and their atomic-level dynamic responses. The transient nature 
of these interactions, occurring on ultrafast time scales, has so far limited 
direct experimental observation and has left the field reliant on computer 
simulations. Existing experimental methods, such as pump-probe 
techniques, have faced challenges in generating and precisely timing short, 
monoenergetic ion pulses essential for capturing these ultrafast 
phenomena. 

Our group has pioneered a novel approach that overcomes these 
limitations by generating the world's shortest monoenergetic ion pulses in 
the keV regime, with a current duration of approximately 5 ps. These pulses 
are produced using femtosecond photoionization of a geometrically cooled 
gas jet, coupled with miniaturization of the ionization section. 

In our experiments, we conduct ion-based pump-probe experiments 
observing the emission of hot electrons post-ion impact, similar to 
processes studied in two-photon photoemission (2PPE) experiments. Our 
findings not only demonstrate the feasibility of our approach and provide 
direct measurements of the ion pulse characteristics but also offer insights 
into the non-equilibrium dynamics of electronic excitation in solids 
following an ion impact. We can track the electronic excitation and 
determine the temporal evolution of a pseudo electron temperature. 

This research opens new avenues for understanding the fundamental 
processes underlying ion-solid interactions, with significant implications for 
semiconductor manufacturing and materials science. Our work sets a new 
standard for temporal resolution in the study of ion-induced phenomena 
and lays the groundwork for future innovations in the field. 

9:30am SS+AMS+AS+CA+LS-FrM-6 How Hot Plasmonic Heating Can Be: 
Phase Transition and Melting of P25 TiO2 from Plasmonic Heating of Au 
Nanoparticles, W. Lu, R. Kayastha, B. Birmingham, B. Zechmann, Zhenrong 
Zhang, Baylor University 

Plasmonic heating has been utilized in many applications including 
photocatalysis, photothermal therapy, and photocuring. However, how high 
the temperature can be reached for the surrounding media due to the 
collective heating of the plasmonic nanoparticles (NPs) and the impact of 
the heat dissipation on the surrounding media is not clear. Herein we 
studied the impact of plasmonic heat generated by resonantly excited gold 
(Au) NPs on P25 TiO2 nanoparticle film. Under 532 nm continuous laser 
irradiation at the surface of the Au-TiO2, the surface evaporation of Au 
nanoparticles and phase transition of TiO2 were observed at moderate laser 
power. More importantly, as high as the melting point of TiO2 of 1830°C is 
confirmed from the molten TiO2 rutile phase. When Au/TiO2 was irradiated 
with an off-resonance laser at 638 nm, no phase transformation or melting 
of TiO2 was observed. The temperature calculation shows that the heating 
generated by Au nanoparticles is not localized. The collective heating from 
an ensemble of Au nanoparticles in the irradiated area produces a global 
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temperature rise that melts TiO2. Our results suggest that the photothermal 
effect could be a major mechanism in the plasmon-assisted photocatalytic 
reactions. The experimental observation of the high temperature of the 
supporting media suggests new applications for utilizing plasmonic heating, 
for example, additive manufacturing. 

9:45am SS+AMS+AS+CA+LS-FrM-7 Kinetics and Dynamics of 
Recombinative Desorption of Oxygen from Silver and Rhodium Surfaces, 
Dan Killelea, Loyola University Chicago 

The ability to obtain velocity distributions of molecules desorbing from 
surfaces with both high temporal precision and angular resolution provide 
newfound insight into both the kinetics and the dynamics of recombinative 
desorption and subsurface emergence. 

I will discuss our observations of subsurface oxygen emerging from beneath 
Rh(111) and how the velocity distribution shifts in comparison to the 
thermally-dominated desorption pathways found for surface-adsorbed 
oxygen. In addition, it was recently discovered that decomposition of 
oxygenaceous surface phases on Ag(111) also exhibit pronounced shifts in 
the energetics of the desorbing oxygen molecules. I will discuss these 
observations and their potential impacts in oxidation reactions in 
heterogeneously catalyzed reactions over transition metal surfaces. 

10:00am SS+AMS+AS+CA+LS-FrM-8 Mort Traum Award Announcement,  

 

10:30am SS+AMS+AS+CA+LS-FrM-10 Unveiling Surface Mysteries with XPS 
Lab from Scienta Omicron, Tamara Sloboda, Scienta Omicron, Sweden; P. 
Amann, Scienta Omicron, Germany; B. Gerace, F. Henn, A. Yost, X. Zhang, 
Scienta Omicron; M. Lundwall, Scienta Omicron, Sweden 

Surface analysis is paramount for understanding material properties, and 
Scienta Omicron's XPS Lab system excels in this realm. Featuring a 
compression unit for superior count rates and sensitivity, it offers 
unparalleled quantitative XPS enabled by a true counting multi-anode 
detector inside the Argus CU analyser.This unique detector employs 128 
individual counters connected to a striped-anode array. With a linear 
response extending to the highest count rates and an exceptional dynamic 
range, it ensures high resolution precise measurements across various 
sample types. 

The versatility of XPS Lab is evident through its scanning, imaging, 
snapshot, and dynamic measurement modes (see Figure 1), enabling 
researchers to tailor their experiments to specific needs. The chemical state 
mapping capability of the XPS Lab provides comprehensive insights into 
surface chemistry, empowering researchers to unravel complex 
phenomena. 

Illustrating its prowess, case studies span catalysis, energy storage, 
semiconductor technology, and biomaterials, showcasing its ability to 
address diverse research challenges. Recent enhancements further 
strengthen its capabilities, solidifying XPS Lab as the premier choice for XPS 
analysis. 

In summary, Scienta Omicron's XPS Lab system offers unmatched precision, 
sensitivity, and versatility, driving advancements in surface science and 
materials research. 

10:45am SS+AMS+AS+CA+LS-FrM-11 Investigation of Stannane (SnH4) 
Decomposition and Sticking Coefficient on Varied Metal Surfaces in EUV 
Lithography Environments, Emily Greene, N. Barlett, D. Qerimi, D. Ruzic, 
University of Illinois at Urbana-Champaign 

In the context of extreme ultraviolet (EUV) lithography, the evaporation of 
tin droplets frequently leads to the deposition of tin on various chamber 
surfaces, including collector mirrors. A prevalent method to remove this tin 
deposition involves hydrogen plasma etching, which transforms the 
deposited tin into stannane (SnH4). This compound, existing in a gaseous 
state under operational conditions, can be evacuated from the chamber 
using a vacuum pump. However, stannane is characterized by its instability, 
tending to decompose and adhere to various surfaces within the chamber. 

To systematically study the decomposition behavior of stannane, a 
specialized experimental chamber has been designed. This chamber 
integrates a load-lock mechanism for inserting a test tube containing liquid 
stannane into a loading section, which is isolated from the main vacuum 
chamber by a valve. Within the main chamber, a quartz crystal 
microbalance (QCM), regulated by a cartridge heater, measures the mass of 
stannane deposits. The QCM will be set to temperatures between 30-
300˚C. Upon opening the valve, the stannane vaporizes and interacts with 
the temperature-controlled QCM, facilitating the quantitative 

determination of the sticking coefficient as a function of both the surface 
material and the temperature. 

Stannane is synthesized through the reaction of LiAlH4, SnCl4, C8H18O, and 
C4H10O2. The four chemicals are mixed in a 3-neck flask while under 
vacuum. The reaction produces SnH4which is flows through three U-tubes 
traps. The first trap is held at -96˚C to trap precursors, the second two traps 
are help at -196˚C and trap the stannane. The stannane is increasingly pure 
the more traps are used. 

This investigation aims to understand and quantify the mechanisms of 
stannane deposition and decomposition, enhancing the maintenance and 
efficiency of EUV lithographic systems by optimizing the cleaning protocols 
for tin contamination. 

11:00am SS+AMS+AS+CA+LS-FrM-12 First Principles Methods for 
Predicting Surface Reaction Mechanisms for Chemical Functionalization of 
Semiconductor Surfaces, Roberto Longo, S. Sridhar, P. Ventzek, Tokyo 
Electron America Inc., 

The density of semiconductor devices continues to increase, accompanied 
by the subsequent scaling down of the critical dimension (CD) size, which is 
now on the order of a few nanometers. This results in device structure 
changes, from two-dimensional (2D) to three-dimensional (3D) structures, 
because the CD size has reached its limit of reduction. To accomplish this, 
precise chemical modification of the required surfaces with atomic scale 
precision is key to obtain the desired geometric control. Precise 
modification implies being able to leverage knowledge of individual plasma 
born species and surface interactions. Unfortunately, species specific 
chemical interaction mechanisms in the context of reactive ions and 
chemical etching are still poorly understood for the full range of chemical 
environments at play. Once dissociated in plasma radicals, there might be a 
wide array of compositions. For similar atomic compositions, variations in 
the molecular structure of the chemical precursor can also result in 
significant differences as to the surface modifications and subsequent 
etching characteristics. The chemical nature of the surface including 
coverage and chemical activity add significant dimensionality to the 
problem of controlling plasma surface interactions in general. We divide the 
problem of elucidating plasma surface interactions into two major 
categories for practical purposes: hydrofluorocarbon driven for oxide etch 
and halogen driven for silicon etch. We present here semiconductor surface 
modeling with general characteristics and investigate the reaction 
mechanisms undergone by a large variety of hydrofluorocarbon molecular 
precursors using density-functional theory (DFT), with a focus on reactive 
halogen adsorption. Given the large parameter space of this problem, we 
describe computational approaches that efficiently and accurately generate 
fundamental data. Physical and chemical surface reactions and the 
corresponding byproducts are identified, obtaining self-limitation 
thresholds for each specific functionalizing chemistry. Therefore, our 
computational results provide valuable insights on the complex physical, 
chemical, and dynamic molecular and ion interactions with functionalized 
semiconductor surfaces, paving the road for designing tailored strategies 
with the desired outcome for each specific system. 
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