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8:00am EM+2D+AP+QS+TF-ThM-1 Electronic and Photonic Integrated 
Devices Enabled by Local III-V on Si Heteroepitaxy, M. Scherrer, IBM 
Research GmbH, Zurich Research Laboratory, Switzerland; K. Moselund, 
Paul Scherrer Institute, Switzerland; Heinz Schmid, IBM Research GmbH, 
Zurich Research Laboratory, Switzerland 

Heterogeneous integration of electronic chiplets is one of the key 
performance drivers in today’s HPC and consumer products. Similarly, a 
performance benefit can be envisioned by heterogeneous integration of 
preferred materials at the device level. Here we explore this bottom-up 
path and report on local growth of III-V compound semiconductors on 
silicon for electronic and photonic applications. For electronic applications 
the high charge carrier mobility in III-V materials is particularly interesting, 
while for optical devices, the direct bandgap and in-plane coupling to Si 
waveguides are key benefits. We will detail the epitaxial growth of III-Vs on 
Si by template-assisted selective epitaxy using MOCVD and highlight this 
method´s uses by discussing selected device characteristics for field-effect 
transistors [1] and pin photodetectors directly integrated to Si waveguides 
[2]. The dense and precise co-placement of III-V gain material with Si allows 
for novel device designs, which will be illustrated by recent results on lasers 
based on hybrid III-V/Si photonic crystal cavity designs [3]. 

This research is supported by EU Grant 860095, 678567, 735008 and SNF 
grant 188173. 

[1] C. Convertino et al. Nat. Electron. (2021) doi.org/10.1038/s41928-020-
00531-3 

[2] P. Wen et al. Nat. Comm. (2022) doi.org/10.1038/s41467-022-28502-6. 

[3] M. Scherrer et al. ACS Photonics (2024) 
doi.org/10.1021/acsphotonics.3c01372 

8:15am EM+2D+AP+QS+TF-ThM-2 In situ Graphene Barriers for Remote 
Epitaxy of SiC, Daniel Pennachio, J. Hajzus, R. Myers-Ward, US Naval 
Research Laboratory 

Remote epitaxy (RE) is a thin film growth technique where epitaxial 
alignment is directed by interactions with a substrate despite it being 
covered by a top layer of material.[1] This top layer must be inert and 
atomically thin for the underlying substrate’s potential field to dominate 
the epitaxial alignment. Since the intermediate layer is inert, the epitaxial 
thin film is weakly bonded to the substrate and can be removed as a 
freestanding membrane and the substrate can be reused, without the 
damage associated with other transfer techniques such as controlled 
cleaving or ion implantation. Transferred 2D two-dimensional (2D) material, 
such as graphene, is commonly used for a layer, but the transfer can 
degrade the film and increase process complexity. To avoid this, we aim to 
grow in situ graphene in the same chemical vapor deposition (CVD) RE 
growth as SiC. RE SiC is advantageous since the high cost of SiC makes 
substrate reuse appealing and isolated SiC membranes are excellent for 
quantum photonics. Despite these benefits, SiC’s high-temperature 
hydrogen-containing CVD environment can easily damage graphene, 
making RE difficult. 

This study established growth windows for in situ graphene via propane-
based hot wall CVD followed by subsequent SiC deposition. Growing at 
1620 °C in 20 slm H2 with 20 sccm propane flow produced predominantly 
monolayer (ML) graphene films on on-axis 6H-SiC(0001) substrates and 2-3 
ML films on 4° off-axis 4H-SiC(0001) substrates with minimal defects found 
in Raman spectral maps. These films exhibited increased uniformity over 
graphene grown via Si sublimation from the SiC substrate, as determined by 
atomic force microscopy (AFM) and Raman spectral maps. This optimal 
graphene growth condition was used for subsequent RE attempts to study 
the effect of SiC growth temperature, precursor C/Si ratio, and growth rate 
on epilayer crystallinity and graphene barrier damage. Nomarski 
microscopy, scanning electron microscopy (SEM), and AFM found SiC grown 
at 1620°C with a C/Si ratio of 1.55 to have the smoothest surface 
morphology and fewest polytype inclusions. SiC crystalline quality appeared 
correlated to growth rate, with lower growth rates producing smoother 
films with fewer polytype inclusions. Single-crystalline, polytype-pure SiC 
epilayers was achieved on 4° off-axis CVD graphene/4H-SiC(0001). Cross-

sectional transmission electron microscopy (TEM) of some growth 
interfaces in this study exhibited non-uniform multilayer graphitic carbon, 
motivating further study of this growth system to improve boundary 
uniformity and SiC epilayer quality. 

[1] Kim, Y., Cruz, S., Lee, K. et al. Nature 544, 340–343 (2017). 

8:30am EM+2D+AP+QS+TF-ThM-3 Basal Plane Dislocation Mitigation via 
Annealing and Growth Interrupts, Rachael Myers-Ward, N. Mahadik, D. 
Scheiman, J. Hajzus, S. White, D. Pennachio, Naval Research Laboratory 

Basal plane dislocations (BPD) in SiC are high-voltage bipolar device killers 
that source Shockley-type stacking faults in the presence of an electron-
hole plasma [1].Multiple research groups have been successful in mitigating 
their propagation from the substrate into the epitaxial layer [2-5]. While 
these are sufficient for typical SiC devices, for high pulsed power current 
density or high surge current capability applications, the injected carrier 
concentration is significant enough to expand converted BPDs. Here, we 
will report results from comparisons of H2 etching to Ar annealing and the 
use of H2 versus Ar during growth interrupts to prevent BPD expansion. 

SiC epitaxial layers were grown using a CVD reactor on 4° off-axis substrates 
toward the [11-20] that are known to have BPDs. A H2 etch or Ar anneal 
was performed before the buffer layer (BL) growth while a growth interrupt 
in H2 or Ar was conducted prior to the intentionally low doped drift layer. 
Ultraviolet photoluminescence (UVPL) imaging was used to image the 
samples before and after UV stressing up to 13 kWcm-2. 

The H2 etch and H2 growth interrupt prevented BPDs from expanding under 
UV stress of 13kWcm-2 and it is believed that the H2 treatment specifically 
inhibited this expansion. To confirm the role of H2, we performed a growth 
using the same conditions as the H2 etch/interrupt, however, an Ar anneal 
was used instead of a H2 etch and the growth interrupt was conducted in an 
Ar atmosphere instead of H2. The sample was UV stressed up to 1000 Wcm-

2 and it was found that four BPD expanded from the substrate into the 
epilayer. For comparison, a sample grown with a double H2 etch (before the 
buffer layer growth and drift layer) and a sample grown with a H2 etch plus 
H2 growth interrupt did not produce faulting at the same power density. 
This indicates that H2 influences BPD expansion. We will present detailed 
parametric results of samples grown with various etching/ annealing, 
growth interrupts, anneal times, buffer layer thickness, gas flow rates and 
interrupt temperature, both in H2 and Ar. 

[1]J.P. Bergman, et. al., Mater. Sci. Forum Vol. 353-356, 299 (2001). 

[2]N.A. Mahadik et.al., Mater Sci Forum 858, 233 (2016). 

[3]R. E. Stahlbush, et al., Appl. Phys. Lett. 94, 041916 (2009). 

[4]M. Kato, et al., Sci. Rep., 12, 18790 (2022). 

[5]N.A. Mahadik et. al., Appl. Phys. Lett., 100, 042102 (2012). 

8:45am EM+2D+AP+QS+TF-ThM-4 Shadow Mask Molecular Beam Epitaxy, 
S. Mukherjee, R. Sitaram, X. Wang, University of Delaware; Stephanie Law, 
Pennsylvania State University 

Shadow mask molecular beam epitaxy (SMMBE) is a form of selective area 
epitaxy (SAE)which uses a mask either directly fabricated on or placed in 
contact with the substrate. During film deposition, epitaxial layers are 
grown on the substrate through apertures in the mask. In addition to 
selective area growth, SMMBE also produces a shadowing effect near the 
mask edges in which elemental fluxes vary as a function of position. This 
results in a gradient of film thickness and/or composition near the mask 
edges. The steepness of the gradient can be controlled by varying the mask 
thickness and/or the angle of the mask edges. In this paper, we 
demonstrate the potential of the SMMBE technique to create in-plane 
gradient permittivity materials (GPMs) by taking advantage of the 
shadowing effect. A GPM is a material in which the permittivity varies as a 
function of location. Our aim is to synthesize in-plane GPMs, in which the 
permittivity varies in the lateral in-plane direction rather than in the vertical 
growth direction. In an in-plane GPM, different wavelengths of light can be 
confined at different in-plane locations on the chip. We are interested in 
creating an infrared GPM, so we chose Si:InAs as our material. To create our 
GPMs, we use the SMMBE approach: by creating flux gradients of both 
indium and silicon near the edges of the mask, we can control the doping 
density and thus the permittivity of Si:InAs in the lateral in-plane direction. 
We started with reusable Si masks that are 200 um thick and 1 cm x 1 cm in 
dimension. Each mask has an aperture at its center which has a dimension 
of 0.5 cm x 0.5 cm at the top and 0.528 cm x 0.528 cm at the bottom. Nano-
FTIR spectra obtained via s-SNOM using a mid-IR nano-FTIR module 
demonstrates that we successfully synthesized infrared GPMs. The GPM 
grown using a 200 um mask can confine light with wavenumbers 650 cm-1 
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to 900 cm-1 over an in-plane distance of 13 um. In this talk, I will discuss the 
influence of several growth parameters in controlling the in-plane 
permittivity of the GPMs, including the growth temperature, mask 
thickness, and As:In ratio. In particular, the 500 um mask provides a larger 
shadowing effect in comparison to 200 um mask. This leads to a larger 
gradient in permittivity over a longer in-plane distance in the GPM: light 
with wavenumbers 650 cm-1 to 1400 cm-1 can be confined over an in-plane 
distance of 30 um. This provides a larger surface area for the construction 
of an ultracompact spectrometer. Tailored mask designs can be employed 
to synthesize in-plane GPMs with tailored permittivity gradients in the 
future. 

9:00am EM+2D+AP+QS+TF-ThM-5 Impact of Excess Ga on Electronic 
Properties in Plasma-assisted MBE-grown β-Ga2O3, Thaddeus Asel, B. 
Noesges, J. Li, Y. Kim, A. Neal, S. Mou, Air Force Research Laboratory, 
Materials and Manufacturing Directorate, USA 

β-Ga2O3 has been of significant interest due to its high electric breakdown 
field, commercially available native substrate, and shallow n-type donors. 
However, β-Ga2O3 differs from other Ga-based semiconductors where 
metal-rich growth conditions are utilized to achieve adsorption-controlled 
growth by consuming the Ga flux entirely. Instead, β-Ga2O3 growth must 
balance the incorporation of Ga with the desorption of a volatile suboxide 
species, Ga2O where this suboxide is a limiting step when growing β-Ga2O3 
via molecular beam epitaxy (MBE) with a traditional Ga source. Increased 
Ga2O desorption causes the growth rate of β-Ga2O3 to decrease as the Ga 
flux is increased beyond the stoichiometric point of the material and can 
impact the stoichiometry of the grown film. In this work, we explore the 
impact of O-rich and Ga-rich conditions on electronic properties in films of 
β-Ga2O3 grown via plasma-assisted MBE (PAMBE). Initial results comparing 
two samples under O-rich and Ga-rich conditions showed a large difference 
in peak low-temperature mobility. The O-rich sample showed a peak low 
temperature mobility of 793 cm2 /V∙s while Ga-rich sample peaked at only 
198 cm2 /V∙s. The mobility and volume carrier density versus temperature 
data was fit using a model to extract out donor and compensating acceptor 
density. The Ga-rich sample showed an acceptor concentration of 2.0×1016 
cm-3 compared to the O-rich sample that was measured to have an 
acceptor concentration of 3.0×1015, and order of magnitude lower. This is 
possibly due to the formation of VGa during the Ga2O desorption process 
during the growth of the films. Another series of films were grown across a 
wider range of O- to Ga-rich conditions to further establish a trend between 
growth conditions and compensating acceptor density. Only Ga flux varied 
between samples and substrate temperature, Si source temperature and RF 
oxygen plasma conditions were held constant. Si concentration in each film 
was anti-correlated with the growth rate which is expected. Conversely, 
compensating acceptor density increased with increasing Ga-rich 
conditions and does not follow the trend of the growth rate. The best peak 
low-temperature mobility occurred for the sample grown in the most O-
rich conditions (789.6 cm2/Vs) and mobility decreased with increasing 
compensating acceptor concentration. Overall, these results indicate the 
importance of Ga:O ratios in β-Ga2O3 films grown via MBE with 
conventional Ga sources. These results demonstrate how improved 
electronical performance can be achieved in β-Ga2O3 by growing under O-
rich conditions and limiting the formation of VGa due to suboxide 
desorption. 

9:15am EM+2D+AP+QS+TF-ThM-6 Advancing Single-Crystalline Oxide 
Membrane Growth via Molecular Beam Epitaxy, Shivasheesh Varshney, S. 
Choo, University of Minnesota; M. Ramis, Institute of Materials Science of 
Barcelona (ICMAB-CSIC), Spain; L. Thompson, J. Shah, Z. Yang, J. Wen, S. J. 
Koester, K. Mkhoyan, A. S. McLeod, University of Minnesota; M. Coll, 
Institute of Materials Science of Barcelona (ICMAB-CSIC), Spain; B. Jalan, 
University of Minnesota 

A sacrificial layer method has proven to be an effective route for 
synthesizing free-standing membranes. In this approach, a crystalline 
sacrificial layer is selectively dissolved in water, allowing the target film to 
be transferred onto a host substrate. However, commonly used sacrificial 
layers (such as SrCa2Al2O6) have complex stoichiometry, posing synthesis 
challenges in molecular beam epitaxy (MBE). In this presentation, we will 
discuss two distinct but MBE-friendly, fast and facile approaches to 
synthesize single-crystalline oxide nanomembranes using hybrid MBE [1,2]. 
In particular, we synthesize epitaxially, single-crystalline SrTiO3 membranes, 
ranging from a few unit cells to several hundred nanometers in thickness, 
using an SrO sacrificial layer, and a solution-processed amorphous 
SrCa2Al2O6sacrificial layer. Films grows in a layer-by-layer growth mode on a 
solution-processed amorphous SrCa2Al2O6 whereas in a step-flow growth 
mode on SrO sacrificial layer. Films grown on SrO layer dissolve rapidly (< 5 

minutes) in water, resulting in millimeter-sized membranes. Combining 
structural characterization using x-ray diffraction (XRD), atomic force 
microscopy (AFM), piezo force microscopy (PFM), and scanning 
transmission electron microscopy (STEM), we will present the structure-
property relationships in these membranes with particular emphasis on 
investigating the role of non-stoichiometry on dielectric properties. Using 
PFM, we demonstrate that Sr-deficient films exhibit robust polarization at 
room temperature, while stoichiometric films remain consistent with the 
paraelectric phase. Finally, we will present the growth of single crystalline 
complex oxide films on a compliant substrate consisting of a few unit-cell 
SrTiO3 seed layers onto an amorphous SiO2 wafer. 

1. S. Varshney, S. Choo, L. Thompson, Z. Yang, J. Shah, J. Wen, S. J. 
Koester, K. A. Mkhoyan, A. McLeod, and B. Jalan, "Hybrid 
Molecular Beam Epitaxy for Single Crystalline Oxide 
Membranes with Binary Oxide Sacrificial Layers" ACS Nano 8, 
18, 6348-6358 (2024). 

2. S. Varshney, M. Ramis, S. Choo, M. Coll, and B. Jalan, "Epitaxially 
Grown Single-Crystalline SrTiO3 Membranes Using a Solution-
Processed, Amorphous SrCa2Al2O6 Sacrificial Layer" under 
review (2024) http://arxiv.org/abs/2405.10464 
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