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2:15pm PS1-WeA-1 Sequential Plasma Process Design by Genetic 
Algorithm, Patrick Conlin, G. Hartmann, Q. Wang, R. Longo, S. Sridhar, P. 
Ventzek, Tokyo Electron America, Inc. 

The complexity of modern semiconductor device fabrication has caused the 
parameter space of plasma process design to balloon to levels which are 
untenable to navigate without algorithmic guidance. The degrees of 
freedom provided by so-called process knobs alone present a substantial 
optimization challenge. “Time” is by far the most flexible process knob and 
the sequencing of plasma processes is the largest source of complexity, 
next to the choice of process chemistry. Understanding the interval 
scheduling problem in the context of plasma-surface interactions is 
hindered by a sparse fundamental knowledge of species-surface site 
interactions, and the computational and experimental effort required to 
elucidate these relationships. An alternative approach to the scheduling 
problem is to employ phenomenological models to establish guiding 
principles for how a process is sequenced, i.e. the problem may be split into 
more tractable parts. For example, how flux and energy interact on a 
surface can be used to order sequences of fluxes. From sequences of flux 
and energy, one can work backwards to understand plasma conditions that 
can be used practically. Many different optimization approaches are 
available for the scheduling problem. Here we describe the use of a genetic 
algorithm (GA) to study the impact of time series of plasma-generated 
species and energy flux on basic surface evolution parameters like etch 
depth, selectivity, and profile. GAs are well-established in the study of 
optimization and are considered especially well-suited for solving interval 
scheduling problems. We encode Langmuir-Hinshelwood plasma-surface 
interaction kinetics, which form the fundamental basis for plasma 
processes, into our GA. We recover the intuitive limits where continuous 
and atomic layer etch equivalents of radical pre-loading are optimal 
sequences. Models of increasing complexity are demonstrated with 
different objective functions. The limitations of GAs, generally and in this 
specific context, are discussed. 

2:30pm PS1-WeA-2 Machine-Learning-Based Force Fields for Molecular 
Dynamics Simulation of Silicon and Silicon Dioxide Ion Beam Etching, 
Shunya Tanaka, S. Hamaguchi, Division of Materials and Manufacturing 
Science, Graduate School of Engineering, Osaka University, Japan; H. Kino, 
National Institute for Materials Science (NIMS), Japan 

Recently machine-learning (ML) techniques have been developed to create 
interatomic force fields and potentials for classical molecular dynamics 
(MD) simulations in the field of materials science. The ML-based force fields 
are the surrogate model of the realistic interatomic force fields, where the 
surrogate model can offer the force fields far more quickly than the 
corresponding density-functional-theory (DFT)-based quantum mechanical 
calculation by interpolating a large amount of force-filed data with a large 
number of possible atomic configurations evaluated in advance by the DFT-
based calculations. The ML-based force fields are expected to be far more 
accurate than the widely used classical interatomic force-field models and 
can be as accurate as those obtained from the DFT-based calculations. 
However, unlike typical MD simulations in thermodynamical equilibrium 
widely used in materials science, sputtering/etching simulations require 
special attention in the development of such force fields; in typical 
sputtering simulations with high-ion-energy impacts, some interatomic 
distances can become extremely small and the standard DFT-based force-
field data do not cover such cases. Therefore, in our study, the Ziegler-
Biersack-Littmark (ZBL) potential functions were used to represent the 
short-rang repulsive interaction whereas the ML-based force fields were 
employed otherwise. The ML-based force fields were developed with the 
Behler-Parinnello Neural Network (BPNN) and the Graph Neural Network 
(GNN) with active learning based on query by committee sampling. MD 
simulations with the newly obtained MD-based force fields were performed 
for ion beam sputtering/etching of Si and SiO2 and the results were 
compared with the beam experimental data as well as the existing classical 
MD simulation results. 

2:45pm PS1-WeA-3 Machine Learning Interatomic Potentials for Plasma-
Surface Interaction Simulations, Jack Draney, A. Panagiotopoulos, D. 
Graves, Princeton University 

Results of molecular dynamics (MD) simulations of nonequilibrium plasma-
surface interactions are highly sensitive to the accuracy of the underlying 
interatomic potential. Increasingly complex interatomic potentials, such as 
ReaxFF [1], have been developed to capture more and more of the 
underlying physics of atomic forces. The most flexible and accurate 
potentials are often the slowest, requiring significant computing power to 
reach the long timescales typical in simulations of plasma-surface 
interactions. Machine learning potentials (MLP) such as DeePMD [2], 
originally developed to fit quantum density functional theory (DFT) data, 
represent maximally flexible models and run quickly on GPUs. In this work, 
we show how MLPs can not only be derived from DFT, but also from 
classical potentials like ReaxFF. We demonstrate the quality of the derived 
MLPs by comparing them to their classical counterparts in simulations of 
oxygen, hydrogen, and argon plasma interactions with diamond and 
amorphous carbon surfaces. We use what we’ve learned from this process 
to fit MLPs to DFT data for the same system and compare the results to 
those from classical potentials. Finally, we outline some of the possible 
pitfalls associated with the successful production and use of MLPs for 
plasma-surface interactions. 

[1] van Duin, A. C. T. et al. ReaxFF: A Reactive Force Field for Hydrocarbons. 
J. Phys. Chem. A 2001, 105 (41), 9396–9409. 
https://doi.org/10.1021/jp004368u. 

[2] Zeng, J. et al. DeePMD-Kit v2: A Software Package for Deep Potential 
Models. J. Chem. Phys. 2023, 159 (5). https://doi.org/10.1063/5.0155600. 

3:00pm PS1-WeA-4 Dry Etching Process with NLD Plasma Distribution 
Determined by Machine Learning, Keiichiro Asakawa, K. Doi, Y. Morikawa, 
ULVAC, Inc., Japan 

A magnetic neutral line discharge (NLD) is an inductively coupled plasma 
generated along a magnetic neutral loop (NL). NLD can generate high-
density plasma with low electron temperature at low gas pressure, and is 
used for dry etching of various device structures such as optical devices and 
MEMS (Micro Electro Mechanical System). Typically, a magnetic field is 
induced by three electromagnetic coils placed around the chamber, and the 
NL region is formed in a ring shape where the magnetic fields cancel each 
other out and become zero. The radius of NL depends on the current value 
of each electromagnetic coil. Therefore, by adjusting the current values of 
the electromagnetic coils, the size of the NL radius can be modified and the 
spatial distribution of plasma can be optimized for the required etching 
distribution across a wafer. Conventionally, it was time-consuming to 
optimize the current values of each electromagnetic coils so that the 
resultant magnetic field for a given NL radius would be zero. Therefore, we 
developed a new application that applies machine learning (gradient 
descent method), and made it possible to instantly output the coil current 
values for each input NL radius and Z-axis position. This has become an 
effective means of spatial and temporal control of the NLD plasma 
distribution, potentially realizing uniform etching condition, i.e., radicals 
and ions contributions, across a wafer. 

3:15pm PS1-WeA-5 Accelerating Plasma-based Process Development and 
Chamber Productivity with Artificial Intelligence, Meghali Chopra, S. 
Sirard, SandBox Semiconductor Incorporated 

Developing advanced semiconductor chips is becoming more expensive and 
time consuming due to the growing sophistication of processing tools, 
recipes, and chip architectures.Traditional brute force trial-and-error 
approaches for optimizing recipes are becoming unsustainable as it is 
impractical for human process engineers to experimentally explore the 
trillions of possible recipe combinations on advanced fabrication 
tools.Furthermore, many of the recipe parameters for plasma etch and 
deposition processes display complex, non-linear interactions.Here we 
showcase a software platform, SandBox Studio™ AI, that efficiently 
generates optimal recipes for plasma etch and deposition processes in less 
than 75% of the time of statistical experimental design approaches.Superior 
performance is achieved by using a hybrid physics-based model coupled 
with artificial intelligence (AI), thus requiring far fewer experiments to 
calibrate.The platform is tool agnostic and automatically maps the multi-
dimensional process space and provides recipe recommendations to 
achieve desired feature profile and uniformity targets.The AI-driven 
approach has been applied across a wide variety of applications and 
development phases.Successful examples of plasma etch and deposition 
recipe predictions that optimize both feature profiles and wafer uniformity 
for logic and memory applications will be discussed.Additionally, we 
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demonstrate how co-optimized multi-step etch and deposition recipes 
capture step interactions, leading to a larger process window compared to 
sequentially optimizing each step separately.Beyond process engineering, 
SandBox Studio™ AI can be used to improve fab tool productivity. The AI 
toolset has been used to identify the root causes of process drift by 
correlating tool sensor data to on-wafer results. The software has 
addressed other common tool issues such as chamber-to-chamber 
matching and can predict optimal recipe conditions to maximize yield 
across multiple chambers.An optimized model may be used to make new 
recipe predictions when minor fluctuations or adjustments are made to the 
incoming chip stack dimensions.In summary, our approach enables 
engineers to streamline plasma-based recipe development, cut costs, and 
enhance manufacturing productivity. 

3:30pm PS1-WeA-6 A Unified Global Model Accompanied with a Voltage 
and Current Sensor for Low-Pressure Capacitively Coupled Rf Discharge, 
Inho Seong, S. Kim, Chungnam national university, Republic of Korea; W. 
Lee, Chungnam nation univerisity, Republic of Korea; Y. Lee, C. Cho, W. 
Jeong, Chungnam national university, Republic of Korea; M. Choi, 
Chungnam national univerisity, Republic of Korea; B. Choi, Chungnam 
nation univerisity, Republic of Korea; H. Seo, S. Song, SK Hynix, Korea; S. 
You, Chungnam national univerisity, Republic of Korea 

Conventional Global Model (GM) assumes that the ion energy at the 
electrode is equivalent to the time-averaged sheath voltage. However, our 
investigations using particle-in-cell simulations reveal a significant 
difference between the ion energy and the sheath voltage. To address this 
discrepancy, we introduce a Unified Global Model (UGM) that incorporates 
real-time voltage and current measurements and integrates plasma circuit 
and sheath model to accurately calculate both ion energy and collisional 
energy losses. Comparative analysis with experimental data demonstrates 
that the UGM provides a closer match to observed results than the 
conventional GM, with a strong linear correlation indicating its reliability for 
plasma monitoring applications. 
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