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8:00am AIML-WeM-1 "Beyond Fingerprinting": Rapid Process Exploration 
and Optimization via High-Throughput and Machine Learning, Brad Boyce, 
Sandia National Laboratories, USA; R. Dingreville, J. Coleman, E. Fowler, C. 
Martinez, Sandia National Labs; D. Adams, Sandia National Laboratories
 INVITED 

Material properties are governed by composition and associated 
microstructure dictated by the thermodynamics and kinetics of 
manufacturing processes.Often, the connectivity between process 
conditions and the resulting structure and properties is complex, evading 
full predictivity via high-fidelity modeling.In this work, we are exploring 
three manufacturing processes where material properties are difficult to 
predict directly from process settings: physical vapor deposition, 
electroplating and additive manufacturing (laser powder bed fusion).Each 
of the three processes offer unique challenges and opportunities.Across 
these three exemplars, we are augmenting traditional process-structure-
property investigations with an accelerated workflow to detect material 
structure/composition, prognose associated properties, and adapt the 
associated process to achieve improved product outcomes.This accelerated 
detect-prognose-adapt cycle is aided by four key elements: (1) automated 
combinatorial synthesis to enable rapid parameter sweeps, (2) high-
throughput evaluation of both conventional and surrogate indicators of 
material chemistry, structure, and properties, (3) unsupervised learning 
algorithms to unravel correlations beyond expert cognition, and (4) 
Bayesian optimization strategies to efficiently explore and exploit high-
dimensional process parameter space.In each of these four domains, we 
take advantage of previously developed capabilities, or where such 
capabilities are insufficient, we develop novel techniques.For example, in 
the domain of electroplating synthesis, we have employed an existing 
robotic pipetting system for formulation of solution chemistries while 
developing a custom 12-cell parallel electroplating system that enables 
hundreds of unique conditions to be explored in about a day.While we 
consider purely data-driven ML algorithms for some correlation analysis, a 
more interpretable and robust solution includes physical models based on 
established governing equations.In this regard, we have developed a 
physics-informed multimodal autoencoder that fuses data from multiple 
characterization modalities alongside physical models to provide a deeper 
fingerprint of material state, enabling cluster disentanglement and cross-
modal inference.SNL is managed and operated by NTESS under DOE NNSA 
contract DE-NA0003525. 

8:30am AIML-WeM-3 Simulations of Epitaxial Inorganic Interfaces Using 
DFT with Machine-Learned Hubbard U Corrections, Noa Marom, Carnegie 
Mellon University INVITED 

Epitaxial inorganic interfaces lie at the heart of semiconductor, spintronic, 
and quantum devices. At an interface between two dissimilar materials 
physical properties and functionalities may arise, which do not exist in any 
of the isolated components in the bulk. To predict the structure of domain-
matched epitaxial interfaces, we use a combination of lattice matching and 
surface matching algorithms implemented in the Ogre Python package [J. 
Chem. Phys., 155, 034111 (2021); J. Phys. Condensed Matter, 34, 233002 
(2022)]. To study the electronic and magnetic properties of interfaces we 
use density functional theory (DFT). Within DFT, the many-body 
interactions between electrons are described by approximate exchange-
correlation functionals. The accuracy of the results hinges on an 
appropriate choice of functional. We have developed a method of machine 
learning the Hubbard U correction added to a DFT functional by Bayesian 
optimization (BO) [npj Computational Materials 6, 180 (2020)]. The 
DFT+U(BO) method balances accuracy with computational cost, enabling 
unprecedented simulations of large models of surfaces and interfaces of 
interest for applications in quantum computing. Examples include InAs and 
InSb surfaces [Advanced Quantum Technologies, 5, 2100033 (2022)], which 
are the substrates of choice for superconductor/semiconductor Majorana 
devices; the HgTe/CdTe and InAs/GaSb interfaces [Phys. Rev. Mater. 5, 
084204 (2021)], in which a 2D topological insulator phase may arise; the 
EuS/InAs interface [Phys. Rev. Mater. 5, 064606 (2021)], proposed as a 
candidate for the realization of a ferromagnet-semiconductor-
superconductor Majorana devices without an external magnetic field; and 

CdTe as a tunnel barrier to control the coupling strength at the interface 
between InSb and α-Sn [ACS Applied Materials & Interfaces 15, 16288 
(2023)]. 
 

9:00am AIML-WeM-5 On-The-Fly Analysis of RHEED Images During 
Deposition Using Artificial Intelligence, Tiffany Kaspar, J. Pope, S. Akers, H. 
Sprueill, A. Ter-Petrosyan, D. Hopkins, E. King, J. Drgona, Pacific Northwest 
National Laboratory 

Modern synthesis methods enable the fabrication of an ever-expanding 
array of novel, non-equilibrium, and/or metastable materials and 
composites that may possess unique and desirable functionality. Thin film 
deposition by molecular beam epitaxy (MBE) can produce atomically 
precise (or nearly so) materials with a wide range of functional electronic, 
magnetic, ferroelectric/multiferroic, optical, and/or ion-conducting 
properties.We are working to employ artificial intelligence (AI)-accelerated 
analysis of in situ and ex situ data streams for on-the-fly feedback control of 
the MBE deposition process that will enable targeted synthesis of novel 
materials with desired structure, chemical stability, and functional 
properties.Here we present a machine-learning-enabled framework for 
analysis of reflection high energy electron diffraction (RHEED) pattern 
images in real time (one image per second).Our approach utilizes pre-
trained neural networks for image preprocessing, statistical analysis to 
identify changepoints in the images over time, and network graph analysis 
methods to precisely identify and classify changes.We demonstrate this 
framework using RHEED images collected from the deposition of epitaxial 
oxide thin films such as anatase TiO2 on SrTiO3(001).Advantages and 
disadvantages of our approach will be discussed, as well as its potential use 
as the basis for on-the-fly feedback control of deposition parameters. 

9:15am AIML-WeM-6 An Unsupervised Machine Learning Approach for 
the Identification of Adsorbates on a Semiconductor Surface: Bcl3 
Adsorption on Si(100), Azadeh Farzaneh, University of Maryland, College 
Park; C. Wang, S. Kalinin, University of Tennessee Knoxville; R. Butera, 
Laboratory for Physical Sciences 

A more thorough understanding of the reaction of molecular precursors on 
crystalline and amorphous surfaces will play a significant role in the 
optimization of industrially relevant processes, such as chemical vapor 
deposition and atomic layer deposition. Here, we explore an unsupervised 
machine learning approach to identify reaction products related to 
molecular precursor adsorption on a semiconductor surface and provide a 
general framework for analyzing surface species. In particular, we focus our 
investigations on the adsorption of BCl3 on Si(100) using scanning tunneling 
microscopy (STM). We designed an unsupervised workflow that results in 
the identification of distinct surface moieties and their relative 
concentrations following the initial adsorption of BCl3 and subsequent 
decomposition reactions on the surface. While previous methods have 
relied on manual cropping of STM images based on defect coordinates, our 
workflow isolates surface features from the base lattice to generate a 
training dataset. Two key components of the Si(100) surface are taken into 
account for isolating surface features: (1) steps and (2) orientation of Si 
dimer rows. This unsupervised method eliminates the need for manual 
labeling an untenable amount of surface features, thereby removing any 
label bias introduced by the operator. It circumvents the bottleneck of 
machine learning workflows when experimental conditions change and 
new labeled data is required. We optimize the performance of the 
unsupervised neural networks by selecting the proper number of feature 
classes that minimize the image-to-image identification error of distinct 
surface features in a given experimental data set. This methodology can be 
generalized and extended to other material systems to provide insight into 
reactions on surfaces. 

9:30am AIML-WeM-7 Quantum and Classical Supervised Learning Analysis 
of Synthesis–Structure Relationships in Epitaxially–Grown 
Semiconductors, Andrew Messecar, Western Michigan University; S. 
Durbin, University of Hawaiʻi at Mānoa; R. Makin, Western Michigan 
University 

The design of material synthesis experiments occurs within highly 
multidimensional processing spaces that are defined by many design 
parameters. Identifying the optimal values for each synthesis parameter is 
often performed through an expensive, Edisonian, trial–and–error approach 
to experiment design. Considerable interest exists in the development of 
machine learning–based approaches for the rapid and accurate 
identification of optimal materials designs and synthesis conditions yielding 
material samples that display target properties of interest. In this work, 
data detailing hundreds of plasma–assisted molecular beam epitaxy 
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(PAMBE) growth trials each of ZnO and various nitride semiconductors have 
been organized into separate, composition–specific data sets. For each 
growth record, the complete set of experiment parameters (substrate 
temperature, effusion cell temperatures, growth duration, etc.) are 
associated with binary measures of crystallinity as well as surface 
morphology as determined by in–situ reflection high–energy electron 
diffraction (RHEED) patterns. A Bragg–Williams measure of lattice disorder 
(S2) is included as an additional, continuous figure of merit for investigation. 
Quantum and conventional machine learning algorithms – including logistic 
regression, tree–based algorithms, and quantum support vector machines – 
are trained on the data to investigate which growth parameters are most 
statistically significant for influencing crystallinity, surface morphology, and 
S2. When predicting the occurrence of monocrystalline GaN PAMBE, we 
show that supervised machine learning algorithms for quantum computers 
can display significant advantage over their classical machine learning 
counterparts. The class conditional probabilities of obtaining single 
crystalline and atomically flat thin film crystals are predicted across 
processing spaces of the two PAMBE operating parameters determined to 
be most statistically important. S2 is also forecasted across the same growth 
spaces. These predictions are compared to conventional experimental 
wisdom as well as the results described within published literature 
regarding the PAMBE growth of these materials. The predictions indicate 
that different growth conditions are of interest depending on whether a 
single crystalline sample, a flat surface, or a well–ordered lattice is desired. 
The superior generalization performance displayed by the quantum 
machine learning algorithms when predicting GaN crystallinity implies 
possible advantage gained via quantum algorithms when studying 
synthesis–structure relationships in other material systems. 

9:45am AIML-WeM-8 'DECIEDD with CARE' - Building an Autonomous 
Ecosystem for the Discovery and Optimization of Metal Nanoparticle Inks, 
J. Elliott Fowler, Sandia National Laboratories; N. Trask, University of 
Pennsylvania; M. Kottwitz, N. Bell, A. Hesu, A. Roth, Sandia National 
Laboratories; J. Hanna, University of Wisconsin - Madison; J. Foster, 
University of Texas at Austin; J. Boissiere, Sandia National Laboratories 

The end-to-end design and manufacturing of printed circuit boards 
substrates, a ubiquitous and critical technology in energy storage, 
communication, and defense systems, is poised to undergo a 
transformation following developments in additive manufacturing within 
the last decade. These advancements include droplet-on-demand inkjet 
printing of conductive inks—suspensions of metallic nanoparticles, 
graphene, carbon nanotubes, etc.—onto dielectric substrates. Despite 
extensive research, few printed commercial inks possess the conductivity 
and robustness desired by high-reliability design agencies. A major 
contributor to the limited availability of viable inks is the enormous 
parameter space of processing conditions and material structure, property, 
and performance criteria that must be balanced during development. 

For this reason, Sandia National Laboratories, together with university 
partners, has engaged in the design and implementation of an autonomous 
materials discovery platform to efficiently (1) synthesize Cu, Ag, and Au 
nanoparticles, (2) formulate those nanoparticles into inks, and (3) print 
those inks to form devices. At each step of the process, characterization 
data of the structure, properties, and performance is provided to a machine 
learning algorithm utilizing a self-consistent and scalable/tunable data 
schema and data management application. Initial campaigns have utilized 
off-the-shelf machine learning methods to autonomously optimize the size 
and dispersity of silver nanoparticle via manipulating the stoichiometric 
ratio of mono-, di- and tri- functionalized carboxylic acid ligands, amongst 
other variables. Concurrently, development of bespoke solutions such as 
multifidelity reinforcement learning and scientific machine learning 
continues to address the challenges of relatively sparse data sets, 
multimodality and fidelity, and the need identify underlying process-
structure-property-performance relationships. 

SNL is managed and operated by NTESS under DOE NNSA contract DE-
NA0003525. SAND2024-06034A. 

11:30am AIML-WeM-15 Accelerating Innovation: Using AI for Process 
Pathfinding, Leandro Medina, SandBox Semiconductor; M. Karam, S. 
Sirard, M. Chopra, Sandbox Semiconductor 

While AI is becoming more common in high volume manufacturing, it 
remains underleveraged in R&D and technology development settings. In 
these research environments, where data sets are often sparse and the 
process requirements constantly changing, it is challenging to establish 
robust data pipelines to take advantage of traditional AI/ML approaches. In 
this work, we show how AI can be used to provide key process and 

pathfinding insights for even small datasets, using a gate-all-around etch 
(GAA) as a case study. Using the software platform SandBox Studio™ AI, we 
demonstrate how physics-enabled AI can be used to (1) improve process 
metrology, (2) generate predictive models of the process space, (3) quickly 
rule out insufficient process regimes and target more viable spaces, and (4) 
evolve with pathfinding development cycles with novel process parameters 
permutations. We first collect a limited set of metrology data from 
disparate sources and use it to generate a high accuracy predictive model of 
the process space for the GAA etch. We specifically target common 
metrology sources which are non-destructive, and cost-effective, including 
Optical Critical Dimension (OCD) scatterometry, ellipsometry, and CD-SEM. 
We then illustrate how an AI-based model can be used to capture the 
experimental process space accurately and efficiently. Next, we 
demonstrate a search strategy for identifying an optimal set of process 
conditions subject to a defined set of constraints. We highlight that entire 
process regimes can be visualized, searched, and/or ruled out using the 
predictive model. Lastly, representative of an R&D environment, we 
illustrate how the model can be updated to predict outcomes for new 
process parameters. 

11:45am AIML-WeM-16 AI-Driven Synthesis of Thin Films with Pulsed 
Laser Deposition, Sumner Harris, Oak Ridge National Laboratory; A. Biswas, 
University of Tennessee, Oak Ridge National Laboratory; C. Rouleau, A. 
Puretzky, S. Yun, R. Vasudevan, D. Geohegan, K. Xiao, Oak Ridge National 
Laboratory 

Traditional methods for synthesizing thin films have typically involved slow, 
sequential processes requiring significant human intervention, with 
material optimization often relying on a mix of expertise and chance 
discoveries. Recent technological progress in autonomous synthesis 
experiments which combine automated synthesis and characterization with 
artificial intelligence (AI) has enabled rapid exploration of large parameter 
spaces, promising to greatly accelerate and advance our understanding of 
synthesis science. In this presentation, I will highlight the development of 
two flexible, autonomy-enabled pulsed laser deposition (PLD) platforms: 
one incorporating real-time, in situ gas-phase and optical diagnostics, and 
the other featuring in vacuo robotic transfer for subsequent 
characterization. I will detail how we merged in situ, real-time diagnostics 
and characterization with high-throughput methodologies and cloud 
connectivity to execute an autonomous synthesis experiment using PLD. 
We synthesized ultrathin WSe2 films via co-ablation of two targets, 
employing real-time laser reflectivity for precise thickness control, and 
achieved a tenfold increase in throughput over conventional PLD 
workflows. Bayesian optimization with Gaussian process regression, 
utilizing in situ Raman spectroscopy, directed the synthesis process and 
autonomously identified the optimal growth windows after sampling 0.25% 
of a 4D parameter space. Furthermore, the Gaussian process surrogate 
model predicted process-property relationships, revealing two distinct 
growth regimes and providing a broader understanding of the synthesis 
space than would be feasible in traditional PLD workflows. Our platforms 
and methodologies enable the autonomous synthesis of any material that 
can be grown by PLD, promising to greatly accelerate thin film synthesis 
with automated, AI-driven workflows. 

12:00pm AIML-WeM-17 Active-Learning Based Structure Discovery in 
STM, Ganesh Narasimha, Oak Ridge National Laboratory; S. Hus, Oak Ridge 
National Lab (ORNL); A. Biswas, Oak Ridge National Laboratory, USA; D. 
Kong, University of Virginia, USA; Z. Gai, R. Vasudevan, Oak Ridge National 
Laboratory, USA; M. Ziatdinov, Pacific Northwest National Laboratory 

Scanning tunneling microscopy (STM) is a widely used tool for atomically-
resolved imaging of materials and their surface energetics. However, the 
optimization of the imaging conditions is a time-consuming process due to 
the extremely sensitive tip-surface interaction. Additionally, conventional 
experimentation involves sequential imaging procedures, and the material-
property correlations are usually deciphered by an operator based on 
auxiliary spectroscopic information. This limits the experimental 
throughput. Here we show a Bayesian optimization-based framework to 
improve imaging conditions in real time [1]. Further, we demonstrate a 
characterization technique using a probabilistic deep learning framework to 
automatically correlate structure-property relationships in a Europium-
based semimetal, EuZn2As2 [2]. The data-driven inference is dynamically 
incorporated to drive STM exploration in regions that optimize a given 
material property. This framework employs a sparse sampling approach to 
efficiently construct the property space using minimal measurements, as 
little as 1 % of the data required in conventional hyperspectral imaging 
methods. We further demonstrate property-guided sample exploration 
using a multiscale-process implementation for the autonomous discovery 
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of structural origins of an observed material property. Our findings reveal 
correlations of the electronic properties unique to local defect density, 
surface terminations, and point defects [3]. The deep learning framework 
offers future implications to study and induce dynamic processes such as 
molecular manipulations to assemble artificial quantum structures. 

References: 

1. Narasimha, G., Hus, S., Biswas, A., Vasudevan, R., & Ziatdinov, M. 
(2024). Autonomous convergence of STM control parameters 
using Bayesian optimization. APL Machine Learning, 2(1). 

2. Blawat, J. et al. Unusual Electrical and Magnetic Properties in 
Layered EuZn2As2. Advanced Quantum Technologies 5, 2200012 
(2022). 

3. Narasimha, G., Kong, D., Regmi, P., Jin, R., Gai, Z., Vasudevan, R., 
& Ziatdinov, M. (2024). Multiscale structure-property discovery 
via active learning in scanning tunneling microscopy. arXiv 
preprint arXiv:2404.07074. 
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