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8:00am 2D+AP+EM+QS+SS+TF-TuM-1 Tailored Growth of Transition Metal 
Dichalcogenides Monolayers and Their Heterostructures, Andrey 
Turchanin, Friedrich Schiller University Jena, Germany INVITED 

Two-dimensional materials (2D), their van der Waals and lateral 
heterostructures possess a manifold of unique electronic, optoelectronic 
and photonic properties which make them highly interesting for 
fundamental studies and technological applications. To realize this 
potential, their tailored growth as well as understanding of the role of their 
intrinsic defects and 2D-material/substrate interactions are decisive. In this 
talk, I will present an overview of our recent progress on the synthesis by 
chemical vapor deposition (CVD), material characterization and studying of 
fundamental electronic and photonic properties of 2D transition metal 
dichalcogenide (TMDs) including some applications in electronic and 
optoelectronic device as well as observing of new excitonic phenomena. A 
particular focus will be on the lateral heterostructures of TMD monolayers 
with atomically sharp boundaries and Janus TMDs. 
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8:30am 2D+AP+EM+QS+SS+TF-TuM-3 High-Coverage MoS2 Growth by 
Two-Step Annealing Process, Shinichi Tanabe, H. Miura, Tokyo Electron 
Ltd., Japan; N. Okada, T. Irisawa, AIST, Japan; Y. Huang, H. Warashina, A. 
Fukazawa, H. Maehara, Tokyo Electron Ltd., Japan 

Continuation of Moore’s Law scaling requires thin channels in nanosheet 
field-effect transistor architecture. In this respect, transition-metal 
dichalcogenides (TMDs) are candidates for the channel material because 
TMDs are expected to show higher mobility than Si when thickness of the 
channel is extremely thin. Compatibility to Si nanosheet field-effect 
transistor fabrication process requires TMD/buffer multilayer film. To obtain 
such film, alternative preparation of TMD and buffer layers is necessary. 
Although high-quality TMD can be obtained on a buffer layer by 
transferring TMD from other substrates, development of a reliable 
transferring method is challenging. Thus, direct growth of a TMD on a 
buffer layer is preferable. 

We report on a successful growth of high-coverage MoS2 on SiO2/Si 
substrate. The process starts with growing an initial film on SiO2/Si 
substrate. Here, a continuous initial film can be easily grown by this process 
with high growth rate. Next, the initial film is sulfurized by a first annealing 
step followed by crystallization of the film by a second annealing step. The 
obtained film is a continuous layered film which was confirmed by cross-
sectional TEM images. In addition, typical Raman spectra consisted of E2g 
and A1g peaks are observed in entire substrate which shows that MoS2 is 
grown with high coverage. The difference of E2g and A1g peaks is about 21 
cm-1. These results indicate that the two-step annealing process is suitable 
for obtaining MoS2 in large area. 

8:45am 2D+AP+EM+QS+SS+TF-TuM-4 Anomalous Isotope Effect on the 
Optical Bandgap in a Monolayer Transition Metal Dichalcogenide 
Semiconductor, Kai Xiao, Center for Nanophase and Materials Sciences 
Oak Ridge National Laboratory; Y. Yu, School of Physics and Technology, 
Wuhan University, China; V. Turkowski, Department of Physics, University of 
Central Florida; J. Hachtel, Center for nanophase and Materials Sciences 
Oak Ridge National Laboratory; A. Puretzky, A. Ievlev, C. Rouleau, D. 
Geohegan, Center for Nanophase and Materials Sciences Oak Ridge 
National Laboratory 

Isotope effects on optical properties of atomically thin 2D materials have 
rarely been studied to date due to significant challenges posed by sample-
to-sample variations resulting from defects, strain, and substrate 
interactions, complicating the interpretation of optical spectroscopic 
results. Here, we report a novel two-step chemical vapor deposition 
method to synthesize isotopic lateral junctions of MoS2, comprising 
monolayer single crystals with distinct isotopic regions. This method 
allowed the minimization of shifts in photoluminescence due to synthetic 
heterogeneities necessary to confirm the intrinsic isotope effect on the 
optical band gap of 2D materials. Raman measurements and temperature-
dependent photoluminescence spectra revealed an unusual 13 (± 7) meV 
redshift as the Mo isotope mass increased in monolayer MoS2. This shift is 
distinct from the trend observed in conventional semiconductors and 
quantum wells (Si, GaAs, diamond, hBN, etc.). Our experimental 
characterization, along with time-dependent density-functional theory 
(TDDFT) and many-body second-order perturbation theory, disclosed that 
this anomalous shift in the optical band gap in 2D MoS2resulted from 
significant changes in the exciton binding energy induced by strong exciton-
phonon scattering. This study provides fundamental insights into 
understanding the effect of exciton-phonon scattering on the 
optoelectronic properties of atomically thin 2D materials. 
 

Synthesis science was supported by the U.S. Dept. of Energy, Office of 
Science, Materials Science and Engineering Division. This work was 
performed at the Center for Nanophase Materials Sciences, which is a DOE 
Office of Science User Facility. 

9:00am 2D+AP+EM+QS+SS+TF-TuM-5 CVD Growth and Characterization of 
High-Quality Janus SeMoS and SeWS Monolayers, Julian Picker, Friedrich 
Schiller University Jena, Germany; M. Ghorbani-Asl, Helmholtz Zentrum 
Dresden-Rossendorf, Germany; M. Schaal, O. Meißner, F. Otto, M. 
Gruenewald, C. Neumann, A. George, Friedrich Schiller University Jena, 
Germany; S. Kretschmer, Helmholtz Zentrum Dresden-Rossendorf, 
Germany; T. Fritz, Friedrich Schiller University Jena, Germany; A. 
Krasheninnikov, Helmholtz Zentrum Dresden-Rossendorf, Germany; A. 
Turchanin, Friedrich Schiller University Jena, Germany 

Structural symmetry breaking of two dimensional (2D) materials leads to 
novel physical phenomena. For 2D transition metal dichalcogenides (TMDs) 
such symmetry breaking can be achieved by exchange of one chalcogen 
layer with another one. The resulting, so-called Janus TMD structure 
exhibits an intrinsic dipole moment due to the different electronegativity 
values of the top and bottom chalcogen layers. Since Janus TMDs do not 
exist as bulk crystals, they cannot be obtained by exfoliation and need to be 
synthesized. Recently, we developed a route to grow Janus SeMoS 
monolayers (MLs) by chemical vapor deposition (CVD). [1] In this approach 
MoSe2 monolayers are firstly grown on Au foils and then sulfurized to 
exchange the bottom selenium layer with sulfur atoms. The formation of 
high-quality Janus SeMoS MLs and the growth mechanism are proven by 
Raman and X-ray photoelectron spectroscopy (XPS), photoluminescence 
measurements, transmission electron microscopy and density functional 
theory (DFT). Here we present an investigation down to the atomic scale of 
Janus SeMoS MLs grown on Au(111). From low-energy electron diffraction 
(LEED) and scanning tunneling microscopy (STM) measurements we 
determine experimentally the lattice parameters of Janus SeMoS for the 
first time. The obtained results are in good agreement with the respective 
DFT calculation. Based on the angle-resolved ultraviolet photoelectron 
spectroscopy (ARUPS) study, we also obtain the spin-orbit splitting value of 
the valence band at the K point. Moreover, applying the same approach, we 
grow and characterize Janus SeWS MLs and provide a comparative analysis 
with the Janus SeMoS system. 

[1] Z. Gan, I. Paradisanos, A. Estrada-Real, J. Picker, C. Neumann, A. 
Turchanin et al., Chemical Vapor Deposition of High-Optical-Quality Large-
Area Monolayer Janus Transition Metal Dichalcogenides, Adv. Mater. 34, 
2205226 (2022). 
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9:15am 2D+AP+EM+QS+SS+TF-TuM-6 Location-Selective CVD Synthesis of 
Circular MoS2 Flakes with Ultrahigh Field-Effect Mobility, Chu-Te Chen, A. 
Cabanillas, A. Ahmed, A. Butler, Y. Fu, H. Hui, A. Chakravarty, H. Zeng, 
University at Buffalo-SUNY; A. Yadav, Applied Materials, Inc.; H. Li, 
University at Buffalo-SUNY; K. Wong, Applied Materials, Inc.; F. Yao, 
University at Buffalo-SUNY 

Two-dimensional (2D) semiconducting transition metal dichalcogenides 
(TMDs) have been considered as promising channel material candidates for 
future nanoelectronics. The device performance has been significantly 
improved over the years due to the advancements in understanding of TMD 
materials, device design, and fabrication process. Despite the early success 
in demonstrating proof-of-concept devices, scalable and single-crystal 
growth of TMD films on suitable substrates remains a formidable roadblock 
to the development of commercially viable TMD-based nanoelectronics. To 
mitigate this problem, we exploit a controlled growth of high-quality TMD 
layers at desired locations and demonstrate excellent and consistent 
electronic properties in transistor device architectures. Taking MoS2 as an 
example, we develop a precursor-seeded growth strategy for the direct and 
site-specific synthesis on SiO2 substrates using chemical vapor deposition 
(CVD). By employing electron-beam lithography to pattern seed layers, 
precise nucleation and growth at designated positions are achieved. 
Through systematic exploration of CVD synthesis parameters, ordered 
arrays of circular MoS2 flakes are successfully grown with the MoO3 seeds 
serving as the nucleation sites. A comprehensive suite of 
microscopic/spectroscopic characterizations along with electrical 
measurements is utilized to analyze the microstructural and transport 
properties of the as-grown MoS2 flakes. The tri-layer circular MoS2 arrays 
possess an adjustable and uniform size and exhibit a consistent field-effect 
mobility up to ~20 cm2/V·s with Bi/Au electrode contacts. These findings 
showcase a technological breakthrough to 2D material synthesis and hold 
great promise for future integration of 2D materials in the next generation 
nanoelectronics. 

9:30am 2D+AP+EM+QS+SS+TF-TuM-7 Optoelectronic Properties of 
Exfoliated and CVD Grown TMD Heterostructures , Elycia Wright, K. 
Johnson, S. Coye, M. Senevirathna, M. Williams, Clark Atlanta University 

Transition metal dichalcogenides (TMDs) have attracted significant 
attention due to their distinctive electronic band structures, which result in 
intriguing optoelectronic and magnetic properties such as direct bandgap in 
the visible-infrared range, large exciton binding energies and the presence 
of two intrinsic valley-contrasting quantities-the Berry curvature and the 
orbital magnetic moment. Researchers have recently shown interest in 
studying heterostructures made from different TMD materials. The idea is 
to combine these materials to create synergistic effects, which can result in 
even more exciting properties than those found in individual TMDs. For 
instance, MoS2/WS2 heterostructure can exhibit novel and enhanced 
optoelectronic performances, including bipolar doping and photovoltaic 
properties. TMD-based heterostructures may open many possibilities for 
discovering new physics and developing novel applications. While the 
science of TMDs and TMD-based heterostructures has made significant 
strides over the past decade, the field has not yet matured. Numerous 
challenges, particularly in realizing TMD-based practical applications, 
remain unresolved. This underscores the importance of our collective 
efforts in pushing the boundaries of this field. 

Exfoliation is a common method for assembling TMD heterostructures, but 
it has limitations in producing TMD heterostructures on a large scale. The 
chemical vapor deposition (CVD) method can be used to grow TMD 
heterostructures on a large scale, which is required in massive device 
production. However, there are numerous challenges in growing high-
quality TMD heterostructures with large areas by CVD, which need to be 
solved before TMD-based practical applications can be achieved. Our 
research will focus on the growth of heterostructures (MoS2/WS2) on 
various substrates (such as sapphire and SiO2/Si) using chemical vapor 
deposition (CVD). We will explore different mechanisms to achieve large 
area heterostructures and compare the resulting optoelectronic properties 
with exfoliated heterostructures. The properties will be characterized using 
Raman and Fourier Transform infra-red (FTIR) spectroscopy and confocal 
laser optical microscopy. 

9:45am 2D+AP+EM+QS+SS+TF-TuM-8 Pulsed Laser Deposited Amorphous 
Boron Nitride for 2D Materials Encapsulation, Daniel T. Yimam, S. Harris, 
A. Puretzky, I. Vlassiouk, G. Eres, K. Xiao, D. Geohegan, Oak Ridge National 
Laboratory, USA 

Recent advancements in 2D materials have opened new avenues in 
optoelectronics and microelectronics. However, their integration is 

hindered by challenges related to materials stability and degradation. 
Realizing the full potential of 2D materials requires synthesizing and 
functionalizing an encapsulation layer with desired properties. Recently 
amorphous boron nitride (aBN) has attracted attention as an ideal low-k 
material suitable for 2D electronics due to its effectiveness as a protective 
encapsulation layer.Unlike hexagonal boron nitride (h-BN), which requires 
high temperatures for deposition and poses challenges for large-area 
synthesis and integration, aBN can be deposited at significantly lower 
temperatures. This property makes aBN highly attractive and compatible for 
back-end-of-line (BEOL) processes in the semiconductor industry. 

In this work, we demonstrate that pulsed laser deposition (PLD) enables the 
deposition of aBN with precise kinetic energy control of precursors, 
facilitating direct deposition onto 2D materials without significant defect 
formation. Various in situ plume diagnostics and monitoring tools during 
deposition were utilized to identify optimal deposition conditions, ensuring 
ideal kinetic energy ranges and accurate thickness control. This enhances 
the aBN as an effective encapsulation and barrier against 2D materials 
thermal degradation, while improving photoluminescence of encapsulated 
2D materials. We believe our work significantly impacts future 
microelectronics by providing low thermal budget method for 
encapsulating 2D materials and understanding strain and defect evolution. 
Our work not only advances the practical applications of 2D materials but 
also paves the way for in situ experimental analysis and diagnostics in the 
field of material science. 

This work was supported by the U.S. DOE, Office of Science, Materials 
Sciences and Engineering Division and the Center for Nanophase Materials 
Sciences, which is a DOE Office of Science User Facility. 

Keywords: Pulsed Laser Deposition, Amorphous Boron Nitride, 2D 
Materials, Encapsulation, In Situ Diagnostics. 

11:00am 2D+AP+EM+QS+SS+TF-TuM-13 Topotaxy for Compositional 
Variations of Transition Metal Dichalcogenides, Matthias Batzill, 
University of South Florida 

Topotaxy is a kind of solid-state reaction in which the product crystal is 
crystallographically related to the initial crystal. In 2D materials the initial 
crystal could be a single sheet or a few layers that are being reacted with 
same or dissimilar elements to produce novel 2D materials that may not 
exist in the bulk. Here we investigate such topotactical reactions for 
transition metal dichalcogenides (TMDs) by reacting them with vapor 
deposited transition metals. This can result in phase transformations of 
know layered materials, such as PtTe2 +Pt => Pt2Te2 [1], new phases such as 
mirror twin grain boundary networks in MoSe2 or MoTe2 [2], or covalently 
linking bi-layer TMDs by intercalants of the same or different TMs [3]. The 
studies are performed on MBE grown TMDs and are further modified by 
post-growth reaction with TM. The resulting structures are characterized by 
surface probes, such as STM, photoemission, and LEED. In general, the 
open structure of many 2D materials make them ideal for topotaxy and 
provide an approach for modifying their composition and induce new 
properties. Moreover, it allows to locally modify an extended 2D sheet and 
thus produce in-plane heterojunctions between ‘original’ and modified 2D 
domains in a first step to create in-plane device structures. 

[1] P.M. Coelho, H.P. Komsa, H. Coy Diaz, Y. Ma, A.V. Krasheninnikov, M. 
Batzill. 

Post-Synthesis Modifications of Two-Dimensional MoSe2 or MoTe2 by 
Incorporation of Excess Metal Atoms into the Crystal Structure. 

ACS Nano 12, 3975-3984 (2018) 

[2] K. Lasek, J. Li, M. Ghorbani-Asl, S. Khatun, O. Alanwoko, V. Pathirage, A.V. 
Krasheninnikov, M. Batzill. 

Formation of In-Plane Semiconductor–Metal Contacts in 2D Platinum 
Telluride by Converting PtTe2 to Pt2Te2. 

Nano Letters 22, 9571-9577 (2022) 

[3] V. Pathirage, S. Khatun, S. Lisenkov, K. Lasek, J. Li, S. Kolekar, M. 
Valvidares, P. Gargiani, Y. Xin, I. Ponomareva, M. Batzill. 

2D Materials by Design: Intercalation of Cr or Mn between two VSe2 van 
der Waals Layers. 

Nano Letters 23, 9579-9586 (2023) 
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11:15am 2D+AP+EM+QS+SS+TF-TuM-14 Solid State Reaction Epitaxy to 
Create van der Waals Heterostructures between Topological Insulators 
and Transition Metal Chalcogenides, Salma Khatun, O. Alanwoko, V. 
Pathirage, M. Batzill, University of South Florida 

Van der Waals (vdW) heterostructures have emerged as a promising avenue 
for exploring various quantum phenomena. However, the formation of 
these heterostructures directly is complicated, as individual materials could 
have different growth temperatures, and alloying can occur at the interface. 
We present an alternative process akin to a solid-state reaction to modify 
the surface layer of quantum materials and introduce new properties. 
Specifically, we used vapor-deposited transition metals (TMs), Cr and Mn, 
with the goal to react with Bi2Se3 and transform the surface layer into 
XBi2Se4 (X = Cr, Mn). Our results demonstrate that the TMs have a high 
selenium affinity that drives Se diffusion toward the TM. We found that 
when a monolayer of Cr is evaporated, the surface Bi2Se3 is reduced to Bi2-
layer, and a stable (pseudo) 2D Cr1+𝜹Se2 layer is formed, whereas MnBi2Se4 
phase is formed with a mild annealing for monolayer amount of Mn 
deposition.[1] However, this phase only occurs for a precise amount of initial 
Mn deposition. Sub-monolayer amounts dissolve into the bulk, and 
multilayers form stable MnSe adlayers. Our study highlights the delicate 
energy balance between adlayers and desired surface-modified layers that 
govern the interface reactions.[1] The success of obtaining the MnBi2Se4 
septuple layer manifests a promising approach for engineering other 
multicomponent vdW materials by surface reactions. 

REFERENCE 

[1] S. Khatun, O. Alanwoko, V. Pathirage, C. C. de Oliveira, R. M. Tromer, P. A. 
S. Autreto, D. S. Galvao, and M. Batzill,Adv. Funct. Mater. 2024, 2315112 

11:30am 2D+AP+EM+QS+SS+TF-TuM-15 AVS National Student Award 
Finalist Talk: Quasi-Van Der Waals Epitaxial Growth of Thin γ'-Gase Films, 
Mingyu Yu1, University of Delaware; S. Law, Pennsylvania State University 

As an advanced two-dimensional (2D) layered semiconductor, GaSe has 
various appealing properties, such as rare intrinsic p-type conductivity, 
nonlinear optical behavior, high transparency in 650-180000nm, and a shift 
from an indirect-bandgap single-layer film to a direct-bandgap bulk 
material. These features make GaSe rich in potential in quantum photonic 
devices, field-effect transistors, photodetectors, etc. GaSe has a hexagonal 
crystal structure composed of Se-Ga-Ga-Se quadruple layers (QLs). Each QL 
is bonded by weak van der Waals (vdW) forces, enabling multiple 
polymorphs: ε-(2H), β-(2R), δ-(4H), and γ-(3R). They have identical non-
centrosymmetric QL with a D3h space group. Besides the four extensively 
explored polymorphs, a new polymorph, γ'-(3-R) GaSe, was proposed for 
the first time in 2018. γ'-GaSe is unique for its centrosymmetric D3d QL (Fig. 
S1), for which γ'-GaSe is predicted to show intriguing properties compared 
to other polymorphs. However, there are few existing reports on the 
observation of γ'-GaSe due to its less-favorable formation energy. 
Moreover, the wafer-scale production of pure GaSe single crystal thin films 
remains challenging because of the coexistence of stable multiphases and 
polymorphs. 

We developed a quasi-vdW epitaxial growth method to obtain high-quality 
pure γ'-GaSe nanometer-thick films on GaAs(111)B at a wafer scale. It 
results in GaSe thin films exhibiting a smooth surface with a root-mean-
square roughness as low as 7.2 Å (Fig. S2a) and a strong epitaxial 
relationship with the substrate (Fig. S2b). More interestingly, we observed a 
pure γ'-polymorph using scanning transmission electron microscopy (Fig. 
S2c,d). Through density-functional theory analysis (Fig. S3), γ'-GaSe can be 
stabilized by Ga vacancies since its formation enthalpy tends to become 
lower than that of other polymorphs when Ga vacancies increase. We also 
observed that, unlike other GaSe polymorphs, γ'-GaSe is inactive in room-
temperature photoluminescence tests. This may be related to its 
centrosymmetric QL structure, which we are exploring further. Meanwhile, 
we systematically studied the growth window for GaSe with high structural 
quality and identified that GaAs(111)B is more suitable than c-sapphire as a 
substrate for GaSe growth. Overall, this study advances the wafer-scale 
production of γ'-GaSe films, and elucidates a method for direct epitaxial 
growth of hybrid 2D/3D heterostructures with atomically sharp interfaces, 
facilitating the development of heterogeneous integration. In the future, 
we will focus on developing the properties and applications of γ'-GaSe, and 
delving into the understanding of the epitaxial growth mechanism. 

 
1 AVS National Student Award Finalist 

11:45am 2D+AP+EM+QS+SS+TF-TuM-16 Investigation of Dry Transfer of 
Epitaxial Graphene from SiC(0001), Jenifer Hajzus, D. Pennachio, S. Mack, 
R. Myers-Ward, U.S. Naval Research Laboratory 

Transfer of high-quality graphene from its growth substrate to substrates of 
technological interest can be necessary to enable its use in certain 
applications, however it remains challenging to achieve large-area transfer 
of graphene that is clean and intact. This work utilizes a dry transfer 
technique in which an adhesive metal stressor film is used to exfoliate 
epitaxial graphene (EG) from SiC(0001) [1]. In this method, the strain 
energy in the metal film must be high enough to allow for uniform 
exfoliation, but low enough such that self-exfoliation of graphene does not 
occur. 

We investigate the dry transfer of monolayer EG (MEG) and hydrogen-
intercalated, quasi-freestanding bilayer graphene (QFBEG) grown by 
sublimation of Si from nominally on-axis 6H-SiC(0001) in a CVD reactor in Ar 
ambient. A magnetron sputtered Ni stressor layer is used to exfoliate EG 
and transfer to GaAs, glass, and SiO2/Si substrates. The Ar pressure during 
sputtering is found to impact the stress, film density, and roughness of the 
Ni film, as determined from wafer curvature and X-ray reflectivity (XRR) 
measurements. By using appropriate sputtering conditions, the 
Ni/graphene film exfoliates from the entire area of the SiC substrate with 
use of thermal release tape. Atomic force microscopy (AFM), scanning 
electron microscopy, Raman spectroscopy, x-ray photoelectron 
spectroscopy (XPS), and Nomarski microscopy are used to characterize the 
graphene. The Ni 2p peak was not detected in XPS of the transferred 
graphene after removal of the Ni film by etching in acid. Additionally, XPS 
revealed minimal oxide present at the graphene-GaAs interface, consistent 
with previous reports for this dry transfer method [2]. 

Raman spectroscopy mapping showed that predominately monolayer 
graphene is transferred from MEG, while predominately bilayer graphene is 
transferred from QFBEG. Raman spectroscopy of the SiC substrate after 
MEG exfoliation shows the 6√3 buffer layer that forms during growth on 
SiC(0001) remains on the SiC substrate. Consequently, if there are regions 
of exposed 6√3 buffer layer in the as-grown MEG on SiC, AFM shows that 
there are corresponding gaps in the transferred graphene film where the 
areas of exposed buffer layer do not transfer. The 6√3 buffer layer is not 
present in QFBEG due to the hydrogen-intercalation process. It is found that 
the same Ni sputtering conditions that led to uniform exfoliation and 
transfer of MEG result in micron-scale tears in the Ni/QFBEG film. By 
lowering the strain energy in the sputtered Ni film, these tears can be 
reduced or eliminated. 

[1] Kim, J., et al., Science, 342, 833 (2013). 

[2] Kim, H., et al., ACS Nano, 15, 10587 (2021). 
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