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8:20am AS+2D+CA+EM+MS+NS+SE+SS+TF-FrM-1 Correlative Analysis 
Using Time-of-flight Secondary Ion Mass Spectrometry for Beam Sensitive 
Samples, Jean-Paul Barnes, C. Guyot, P. Hirchenhahn, A. De Carvalho, N. 
Gauthier, T. Maindron, B. Gilquin, D. Ratel, C. Gaude, O. Renault, Univ. 
Grenoble Alpes, CEA, Leti, France; A. Galtayries, Chimie ParisTech, PSL 
University, CNRS, Institut de Recherche de Chimie Paris, France; G. Fisher, 
Physical Electronics USA; C. Seydoux, P. Jouneau, Univ. Grenoble Alpes, CEA, 
IRIG-MEM, France INVITED 

Time-of-flight Secondary Ion Mass Spectrometry (TOF-SIMS) is now widely 
used for materials analysis in domains such as semiconductor and energy 
applications. These challenging applications also provide access to well-
controlled, custom made samples that have allowed the limits of TOF-SIMS 
analysis to be identified and helped in the development of correlative 
analysis approaches. Recent examples include combining AFM 
measurements with TOF-SIMS depth profiling to correct for sputter rate 
differences [1] or to measure mechanical or electrical properties and 
performing X-ray tomography prior to FIB-TOF-SIMS analysis to allow 
morphological and compositional data from the same volume to be 
visualized [2]. Currently we are working on two aspects. Firstly improving 
the quantification and chemical sensitivity of the technique by combining 
TOF-SIMS with photoemission techniques (XPS or XPEEM), and secondly 
trying to improve the lateral resolution by correlation with SEM and AFM 
measurements. Recent examples will be shown for the analysis of beam 
sensitive organic samples such as OLED devices, brain tissue samples after 
medical device implantation [3] and symbiotic microorganisms [4]. As well 
as the correlative aspects between techniques, we will show how tandem 
mass spectrometry can help in analyzing complex organic samples. In all 
cases the importance of sample preparation is paramount, especially for 
biological samples. For example, for the correlation between TOF-SIMS and 
XPS on OLED samples, a wedge crater protocol has been developed to allow 
analysis on exactly the same area of the sample whilst minimizing beam 
damage to the sample. Wedge crater preparation and transfer between 
instruments is performed under a protected environment (vacuum or inert 
gas) to avoid unwanted surface modifications. 

Part of this work, carried out on the Platform for Nanocharacterisation 
(PFNC), was supported by the “Recherches Technologiques de Base” and 
the “CARNOT” program of the French National Research Agency (ANR). 

[1] M. A. Moreno et al. JVST B, vol. 36, MAY 2018. 

[2] A. Priebe et al. ULTRAMICROSCOPY, vol. 173, pp. 10-13, FEB 2017. 

[3] A. G. De Carvalho et al. Biointerphases, vol. 15, 2020. 

[4] C. Uwizeye et al. PNAS. Vol 118, e2025252118, 2021. 

9:00am AS+2D+CA+EM+MS+NS+SE+SS+TF-FrM-3 Secondary Ion Mass 
Spectroscopy of Battery Surface and Interface Chemistry – Metrology and 
Applications, Yundong Zhou, S. Marchesini, X. Yao, Y. Zhao, I. Gilmore, 
National Physical Laboratory, UK 

Batteries are very important to achieve carbon net zero. Understanding 
battery materials change, electrode surfaces, solid electrolyte interphase 
(SEI) evolution and novel solid-state electrolyte structures is very helpful for 
developing better batteries. Surface chemical analysis techniques such as X-
ray photoelectron spectroscopy (XPS) and Raman spectroscopy are often 
used but they have their limitations. XPS analysis cannot always resolve 
overlapping binding energies for some key SEI elements. The SEI often has 
poor Raman signal intensity. These are all hurdles for battery applications. 

Secondary ion mass spectrometry has great potential to study interfacial 
chemistry in batteries owing to high sensitivity and high-resolution imaging 
in 2D and 3D.In this study, we use an OrbiSIMS instrument which is 
equipped with two complementary mass spectrometers (MS). A time-of-
flight (ToF) MS has the capability for 2D and 3D imaging using a Bi3

+ liquid 
metal ion gun with a spatial resolution of up to 200 nm but with modest 
mass resolving power. The Orbitrap MS offers high mass resolution and 
mass accuracy (> 240,000 at m/z 200 and < 2 ppm, respectively). The 
instrument is equipped with low energy Cs and O2 sputter beams for high 

resolution depth profiling of inorganic materials. It also has a Leica docking 
station enabling samples to be transferred using a vacuum sample transfer 
chamber from an argon glove box without atmospheric exposure. To 
improve the quality of measurements on battery materials, we have used 
ion implanted materials to determine relative sensitivity factors for relevant 
elements. We have also conducted a systematic study to optimise the 
OrbiSIMS depth profiling capability. These findings along with 
recommendations to reduce effects of signal saturation will be discussed 
and examples of the application to batteries will be provided. We will 
provide examples of the application of ToF MS and Orbitrap MS. (1,2) 

  

1. X. Yao et al., Energy Environ. Sci., 2023, DOI: 
10.1039/D2EE04006A.   

2. S. Marchesini et al., ACS Appl. Mater. Interfaces, 14(2022)52779-
52793. 

  

9:20am AS+2D+CA+EM+MS+NS+SE+SS+TF-FrM-4 Characterizing Ion 
Distribution at the Solid-Electrolyte Interface in Solid-State Lithium Ion 
Batteries with ToF-SIMS, Teodora Zagorac, University of Illinois - Chicago; 
M. Counihan, J. Lee, Y. Zhang, Argonne National Laboratory, USA; L. Hanley, 
University of Illinois - Chicago; S. Tepavcevic, Argonne National Laboratory, 
USA 

Interest in solid state lithium-ion batteries as the next generation of energy 
storage devices has led to intense study of the chemistry, structure, and 
manufacturing processes for polymer electrolytes. Lithium 
bis(trifluoromethanesulfonyl) imide (LiTFSI) salt is often used to introduce Li 
ions into the solid-state electrolyte. Lithium bis(fluorosulfonyl)imide salt 
(LiFSI) and lithium nitrate (LiNO3) are less expensive salts with the potential 
to improve performance characteristics over pure LiTFSI in certain 
electrolyte formulations. The differences in distribution and reactivity of 
these different salts are still unknown but are critical to battery 
performance. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 
imaging and depth profiling was performed to compare the distributions of 
Li+ cations and TFSI-, FSI-, and NO3

-anions across the solid-electrolyte 
interface (SEI) formed between the polymer electrolyte and thin lithium 
metal electrode. Experiments were performed on ~600 nm salt-rich 
poly(ethylene oxide) electrolytes with ~10 nm overlayers of vapor-
deposited Li metal. Samples were probed with 30 keV Bi3+ from a liquid 
metal ion gun while depth profiling with 10 keV Ar1400 gas cluster ion beam 
to collect both positive and negative ion mass spectra. Ion distributions 
from the three salts and their 3D images will be presented and discussed in 
terms of the relative composition of their SEI layers. Chemical differences 
from ToF-SIMS analysis help explain the differences in electrochemical SEI 
formation and half cell cycling: LiTFSI and LiFSI are similar, but LiNO3 
presents much different electrochemical properties. 

9:40am AS+2D+CA+EM+MS+NS+SE+SS+TF-FrM-5 A Perspective on X-ray 
Photoelectron Spectroscopy (XPS) Peak Fitting, and Reporting of XPS Data 
Acquisition and Peak Fitting Parameters in the Literature, Matthew 
Linford, G. Major, J. Pinder, Brigham Young University 

We recently reported that a rather large fraction (ca. 40 %) of the XPS peak 
fitting in the literature is at best suspect. In a recent Perspective article (doi: 
10.1116/6.0002437) we argue that the various stake holders of the 
problem can act together to improve the current situation. This Perspective 
begins with representative examples of poor XPS peak fitting. The purpose 
of showing these examples is to demonstrate to the reader that we are not 
quibbling or arguing over subtle interpretations of the data. Increasingly, 
we see errors that might be classified as egregious. We argue that science is 
in a state of ‘pre-crisis’ more than in a state of ‘crisis’. We suggest that if too 
much incorrect data analysis enters the literature it may cease to be self-
correcting. We note the very large number of surface and material 
characterization techniques available today and how this presents a 
challenge for scientists. Consequently, it is likely that many manuscripts are 
incompletely reviewed today. Graduate students and post-docs at research 
institutions are often given minimal training on acquiring and analyzing XPS 
data. High fees for instruments can limit access to them and student 
training. Prisoner’s dilemmas may help explain situations in science that 
lead to suboptimal outcomes for the community. Authors are primarily 
responsible for the quality of the research in their papers, not reviewers or 
editors. We question the wisdom of placing the names of reviewers and 
editors on papers. In some cases, staff scientists are not adequately 
recognized for their intellectual contributions to projects. Selective 
reviewing may allow more reviews to be performed without overtaxing the 
community. Reviewing at some open access journals may be inadequate. 
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Collaboration needs to be encouraged to a greater extent at some 
institutions. 

10:00am AS+2D+CA+EM+MS+NS+SE+SS+TF-FrM-6 Unsupervised and 
Supervised Machine Learning Applied to ToF-SIMS of an Organic Matter-
Rich Mudstone with Molecular Biomarker, M. Pasterski, University of 
Illinois Chicago; M. Lorenz, Oak Ridge Natinal Laboratory; A. Ievlev, Oak 
Ridge National Laboratory; R. Wickramasinghe, Luke Hanley, F. Kenig, 
University of Illinois Chicago 

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has 
been used to detect organic compounds including molecular biosignatures 
(biomarkers) in geologic samples (R.C. Wickramasinghe, et al., Anal. Chem., 
2021, 93, 15949). The spatial distribution of these biomarkers can help 
determine when and how these organics were incorporated into the host 
rock. ToF-SIMS imaging can rapidly collect a large amount of data, but 
molecular and fragment ions of different species are mixed together in 
complex mass spectra that are difficult to interpret. Here, we apply 
unsupervised and supervised machine learning (ML) to help interpret the 
mass spectra obtained by ToF-SIMS of an organic-carbon-rich mudstone 
from the Middle Jurassic of England (UK). It was previously shown that the 
presence of sterane molecular biomarkers in this sample can be detected 
via ToF-SIMS (M.J. Pasterski, et al., Astrobiol., in press). We use 
unsupervised ML on field emission scanning electron microscopy – electron 
dispersive spectroscopy (SEM-EDS) measurements to define compositional 
categories based on differences in elemental abundances. We then test the 
ability of four ML algorithms - k-nearest neighbors (KNN), recursive 
partitioning and regressive trees (RPART), eXtreme gradient boost 
(XGBoost), and random forest (RF) - to classify the ToF-SIMS spectra using 
the categories assigned via SEM-EDS, using organic and inorganic labels, as 
well as using presence or absence of detectable steranes. KNN provided the 
highest predictive accuracy and balanced accuracy. The feature importance, 
or the specific features of the ToF-SIMS data used by the KNN model to 
make classifications could not be determined, preventing post-hoc model 
interpretation. However, the feature importance extracted from the other 
three models was useful for interpreting spectra. We determined that some 
of the organic ions used to classify biomarker containing spectra may be 
fragment ions derived from kerogen. 

10:40am AS+2D+CA+EM+MS+NS+SE+SS+TF-FrM-8 Probing Thin Film 
Interfaces at the Nanoscale by Low Energy Ion Scattering, Marko Sturm, A. 
Chandrasekaran, A. Valpreda, A. Zameshin, R. Van de Kruijs, A. Yakshin, F. 
Bijkerk, M. Ackermann, University of Twente, Netherlands INVITED 

The growth of thin films with nanometer range thickness is of great 
importance for application topics as nanoelectronics, oxidation protection 
of thin films and optical coatings for X-ray applications. The performance of 
these coatings often critically depends on the sharpness of the interfaces 
between different layers. In this talk I will outline how we use Low-energy 
ion scattering (LEIS) to study interface formation between layers of different 
transition metals (TMs) and between TMs and Si. 

LEIS with noble gas ions as projectiles yields surface peaks that indicate the 
composition of the outermost atomic layer of a sample. This makes the 
technique excellently suited to study whether deposition of a thin films 
leads to a closed layer. However, deposition of an overlayer on top of an 
underlayer may result in surface segregation of underlayer atoms (driven by 
surface energy differences or stress), such that the surface composition is 
not directly representative for the in-depth concentration profile. We 
analyzed the evolution of surface coverage versus deposited thickness for a 
large set of TM/TM film combinations, deposited by magnetron sputtering 
in a system that allows LEIS analysis without vacuum break after deposition. 
By applying a model that takes into account surface segregation, the 
interface profiles were derived from these layer growth profiles, which we 
call deposition depth profile. In addition, we demonstrated that the 
sharpness of interfaces in TM/TM film systems can be predicted by a 
phenomenological model with the crystal structure and surface energy of 
the materials as input parameter. This model in principle predicts the 
sharpness of the interface in any TM/TM thin film combination! [1] 

Apart from surface peaks, LEIS spectra typically also contain so-called tails, 
caused by projectiles that, after sub-surface scattering, are reionized when 
leaving the sample. It was demonstrated before that LEIS tails can be used 
to determine thickness of various thin film systems, when the stopping 
power of the projectiles is known. Here, we show that LEIS tails can also be 
used to determine the sharpness of interfaces of few nm Si-on-W and Si-
on-Mo films, by comparing LEIS measurements with Monte Carlo 
simulations with the TRBS code, which takes into account multiple 
scattering and stopping in the target. This approach allows interface 

characterization from a single sample, without the need to make a 
deposition depth profile. 

References: 

[1] A. Chandrasekaran, R.W.E. van de Kruijs, J.M. Sturm, A.A. Zameshin and 
F. Bijkerk, ACS Applied Materials & Interfaces 11, 46311 (2019) 

11:20am AS+2D+CA+EM+MS+NS+SE+SS+TF-FrM-10 The Effect of 
Instrument Settings, Sample Distance, and Tilt on TofsimsSecondary Ion 
Intensities, Alan Spool, L. Finney, Western Digital 

Experiments were performed to explore the effects of various instrument 
settings and sample placements on secondary ion intensities to better 
understand what factors have the greatest effect on repeatability and 
replicability in TOF-SIMS. A batch of magnetic recording disks used in hard 
disk drive manufacture, natively flat and homogeneous, were used as test 
samples for the purpose. As expected, by far the largest variable altering 
raw intensities was the LMIG tip stability. LMIG tips can have stable 
emission currents while still producing variable pulsed LMIG beam currents 
with resultant variable secondary ion counts. This variability sometimes is 
seen in slow current drift, but is sometimes so rapid that measurements 
taken directly before each measurement are not close enough in time to 
properly scale the measurement results. In these cases, normalization is the 
only solution. Secondary ion intensities were remarkably insensitive to 
small variations in sample height (position relative to the extractor). Far 
more interesting were the changes to the secondary ion intensities that 
resulted from tilting the sample. These effects varied amongst the 
secondary ions detected such that normalization did not remove them. 
Secondary ion emission as a function of emission angle has long been 
understood to be like a cosine function and to vary somewhat from ion to 
ion. These different angular profiles explain the differences seen in ion 
detection as a function of tilt. Some of these differences proved to be 
asymmetrical, varying depending on whether the sample was tilted toward 
or away from the primary ion source, an indication that in some situations 
some residual momentum from the initial primary ion impact onto the 
surface is carried into the secondary ion emission. These results have 
implications for attempts to do quantitative analysis on any sample that is 
not completely flat. 

11:40am AS+2D+CA+EM+MS+NS+SE+SS+TF-FrM-11 Evaluation of 
Unaltered and Irradiated Nuclear Graphite Surfaces through Integrated 
Traditional XPS and HAXPES Techniques, Jonathan Counsell, L. Soomary, K. 
Zahra, Kratos Analytical Limited, UK; B. Spencer, A. Theodosiou, University 
of Manchester, UK 

Graphite-moderated reactors have been operational worldwide for several 
decades. There exists a substantial body of research in this domain, with 
particular emphasis on investigating the impact of irradiation damage on 
the graphite matrix. In order to satisfy the design and regulatory requisites 
of these advanced reactors, it becomes imperative to gain a deeper 
comprehension of the retention and transportation mechanisms of fission 
products within graphite. 

This study outlines a technique for the precise assessment of the surface 
chemistry of highly-oriented pyrolytic graphite (HOPG), serving as a 
representative model akin to the current graphite grades utilized in the 
nuclear sector. We delve into the process of surface etching aimed at 
eliminating surface adsorbates and contaminants. This process involves the 
utilization of both monatomic and cluster ions, the former inadvertently 
causing undesirable damage to the graphite structure. Such damage is 
evidenced by a significant reduction in the sp2 component of C 1s. We 
introduce the use of UPS analysis as a straightforward means of 
determining the presence of sp2 characteristics in the uppermost atomic 
layers. 

Moreover, we examine the consequences of high-energy ion implantation 
(Cs+) and the ensuing damage to the HOPG surface. This examination is 
carried out using XPS (1486eV) and HAXPES (2984eV), thereby showcasing 
the capability to characterize the resulting surface damage and the 
associated alterations within the probed depths. 
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