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1:40pm PS+SE-MoA-1 On the Influence of the Target Material on the 
Discharge Properties of the High Power Impulse Magnetron Sputtering 
Discharge, Jon Tomas Gudmundsson, K. Barynova, University of Iceland; M. 
Rudolph, Leibniz Institute of Surface Engineering (IOM), Germany; J. Fischer, 
Linköping University, Sweden; S. Suresh Babu, University of Iceland; M. 
Raadu, N. Brenning, KTH Royal Institute of Technology, Sweden; D. Lundin, 
Linköping University, Sweden 

High power impulse magnetron sputtering (HiPIMS) operation results in 
increased ionization of the sputtered species and lower deposition rate 
than the dc magnetron sputtering discharge, when operated at the same 
average power. We have applied the ionization region model (IRM) [1] to 
model HiPIMS discharges in argon with a number of different targets [2,3], 
to study various processes, such as working gas rarefaction and refill 
processes, the electron heating mechanisms, ionization probability and 
back-attraction of the sputtered species, and recycling mechanisms. The 
HiPIMS discharge can contain a large fraction of ionized sputtered material 
and often a significant fraction, of the ions involved in the sputter process 
are ions of the target material. This also implies that a large fraction of the 
ions of the sputtered species can be attracted back to the target and are 
not deposited on the substrate to form a film or coating. Self-sputtering and 
the self-sputter yield are therefore expected to play a significant role in 
HiPIMS operation, and have a decisive impact on the film deposition rate, 
at least for metal targets. We explore the relationship between the self-
sputter yield and deposition rate as well as the ionization and back 
attraction probabilities. The back-attraction probability appears to decrease 
with increased self-sputter yield. The various contributions to working gas 
rarefaction including electron impact ionization, kick-out by the sputtered 
species, and diffusion, are evaluated and compared for the different target 
materials, over a range of discharge current densities. For all cases the 
working gas rarefaction is found to be significant, and to be caused by 
several processes, and that their relative importance varies between 
different target materials. In the case of a graphite target, electron impact 
ionization is the dominating contributor to the working gas rarefaction, with 
55 - 64 % contribution, while the kick-out, or sputter wind, has negligible 
influence, whereas in the case of tungsten target, the kick-out dominates, 
with 39 - 48 % contribution. The relative role of kick-out by the sputtered 
species increases and the relative role of electron impact ionization 
decreases with increased mass of the target atoms. 
 
[1] Huo et al., Journal of Physics D: Applied Physics 50, 354003 (2017) 
 
[2] Gudmundsson et al., Surface and Coatings Technology 442, 128189 
(2022). 
 
[3] Babu et al., Plasma Sources Science and Technology 31, 065009 (2022) 
 
 

2:00pm PS+SE-MoA-2 Numerical Analysis of Curling Probe Designing for 
an Effective Electron Density Measurement in Plasma, Daisuke Ogawa, S. 
Kato, H. Sugai, K. Nakamura, Chubu University, Japan 

Electrons make a main contribution to generating reactive species in a low-
temperature plasma. Optical emission is often utilized to monitor plasma, 
but it should be noted that the ultimate origin of the emission is due to 
collisions with the electrons in the plasma. This means that electron 
monitoring could be the primary information of the plasma. A curling probe 
is one of the probes that enable an electron density measurement in the 
plasma. The probe measures the density derived from a shift of the 
fundamental resonant frequency that the probe holds. Therefore, the 
probe measures the density even in an environment where the plasma 
makes a dielectric film deposition. The probe utilizes a slot antenna to make 
the electromagnetic resonance, which is equipped on the top surface of the 
probe. This antenna structure gives an advantage in directional electron 
density measurement. This directionality is useful, particularly when the 
probe desires to be embedded into a wall and/or an electrode. Recently, we 
have also developed a technique with the curling probe that enables one to 
make in-situ measurements of electron density in plasma and the film 

thickness deposited on the probe surface. The technique requires two 
different-sized curling probes, so we named it the double curling probe 
method. This technique is potentially powerful in a plasma-processing 
reactor with electron density monitoring. However, we noticed that the 
technique requires further improvement in their measurement resolution; 
the frequency shift is not always noticeable, especially when the deposited 
film thickness is small. The frequency resolution depends on the quality 
factor of an inverted peak in the reflectance spectrum. According to the 
circuit theory, the factor depends on antenna configuration, such as the 
antenna's resistance, inductance and capacitance. These parameters 
depend on the antenna design, so we have researched how curling probe 
design affects the factor with an electromagnetic wave simulator, CST 
microwave studio. Our recent result showed that the factor depends on the 
antenna material, the antenna length, and the antenna thickness. In 
particular, the long antenna helps stabilize the factor even when increasing 
electron density in plasma. In this presentation, we will show our recent 
analysis to suggest what antenna design a curling probe ought to have to 
improve electron density measurement with a curling probe. 

2:20pm PS+SE-MoA-3 Annular Beam Confocal Laser-Induced Fluorescence 
Diagnostic for Measurements of Ion Velocity Distribution Function in 
Industrial Plasmas, Ivan Romadanov, Y. Raitses, Princeton Plasma Physics 
Laboratory 

Laser-Induced Fluorescence (LIF) is a powerful diagnostic tool for analyzing 
ion velocity distribution functions (VDFs) in plasma [1]. However, the 
requirement for two-sided access to plasma for beam injection and 
fluorescence collection in conventional LIF configuration is not always 
practical. Confocal LIF configurations, which are widely used in various 
fields such as biology and medicine, have been developed for several 
plasma diagnostic applications [2]. The primary advantage of confocal LIF 
configurations is the coincidence of the laser beam injection and 
fluorescence collection branches, enabling measurements in systems with 
limited optical access or complex geometries. This study introduces a novel 
variation of confocal LIF - Annular Beam Confocal Laser-Induced 
Fluorescence (ABC-LIF) configuration [3]. The proposed LIF configuration 
utilizes a structured Laguerre-Gaussian laser beam with an annular intensity 
profile, generated by diffractive axicons. This approach facilitates LIF signal 
collection along the main optical axis within the ring region while 
controlling spatial resolution through laser beam parameters, such as 
annulus thickness and beam diameter. Consequently, all enclosed 
fluorescence light is collected, maximizing the signal-to-noise ratio (SNR). 
This method achieves a spatial resolution of approximately 5 mm at a 300 
mm focal distance, with the potential for 1 mm resolution, comparable to 
conventional LIF. The ABC-LIF configuration benefits from a small depth of 
field (DOF), typically achieved by Gaussian beams of large diameter, while 
the Laguerre-Gaussian beam allows for maintaining spatial separation 
between fluorescence and laser lights at comparable DOF values. 
Additionally, the configuration circumvents issues with beam back 
reflection. The ABC-LIF configuration was experimentally verified in 
industrial DC plasma source measurements of argon ion VDFs. Comparisons 
between confocal and conventional LIF revealed good agreement in 
determining plasma parameters, such as ion temperature, flow velocities, 
and ion density profiles. Applicable to various plasma processing 
equipment and sources, including hollow cathodes, microplasmas, and 
electric propulsion, the ABC-LIF configuration presents a promising 
diagnostic tool for industrial plasmas. 

References 

[1] Bachet G et al 1998 Phys. Rev. Lett. 80 3260 

[2] Thompson D et al 2017 Rev. Sci. Instrum. 88 103506 

[3] I. Romadanov, Y. Raitses, arXiv preprint arXiv:2303.12580. (2023) 

Funding Acknowledgement: This work was performed under the U.S. 
Department of Energy through contract DE-AC02-09CH11466. 

2:40pm PS+SE-MoA-4 Control of Electron Energy Distribution Function in 
Electron Beam Generated ExB Plasma, Nirbhav Chopra, Y. Raitses, 
Princeton Plasma Physics Laboratory 

Electron beam (e-beam) generated plasmas are promising for low pressure, 
low damage threshold material processing applications requiring efficient 
generation of ions and radical species [1,2]. The production of reactive 
species generated by electron impact is controlled by the electron energy 
distribution function (EEDF). In this work, we investigate the EEDF and 
plasma parameters of a partially magnetized plasma generated by e-beam 
in low pressure (0.1-10 mTorr) argon and nitrogen. The e-beam (energy < 
100 eV) is extracted from a negatively biased thermionic filament and 
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injected into a cylindrical vacuum chamber with applied axial magnetic 
field. The EEDF is measured using electrostatic probes. Results show the 
presence of e-beam electrons with energies comparable with the applied 
cathode voltage and a group of warm electrons (10-30 eV). Mechanisms of 
the formation of this intermediate group of electrons will be discussed. In 
addition, we will present and discuss the effect of the addition of nitrogen 
gas to the argon plasma on the EEDF. 

[1] Zhao F et al C G 2021 Carbon 177 244–51 

[2] Walton S G et al 2015 ECS J. Solid State Sci. Technol. 4 N5033–40 

3:00pm PS+SE-MoA-5 Expanding the Capabilities of Microwave Hairpin 
Resonator Probes, Steven Shannon, North Carolina State University
 INVITED 

Microwave hairpin resonator probes are a common diagnostic for 
measuring electron density in plasmas. They are particularly effective in low 
temperature plasmas, RF driven plasmas, reactive (particularly depositing) 
plasma chemistries, and other plasma environments that can challenge the 
effective use of comparable probe diagnostics such as Langmuir probes or 
emissive probes. Efforts to increase the utility of these probes through both 
innovative probe design (such as biasing and curling probe design) and 
combination of the hairpin probe with other diagnostic techniques (such as 
laser photodetachment studies in electronegative discharges) have 
increased the utility of hairpin probes in the field of experimental plasma 
science. This work presents efforts to expand on the measurement 
capabilities of these probes in two ways. First, the analysis of resonance 
data is expanded to account for plasma contributions to the Q-factor of the 
loaded resonance circuit. From this, additional plasma parameters such as 
electron neutral collision frequency can be estimated. Second, the time 
resolution of these probes are expanded to provide insight into the time 
modulation of plasma discharges including pulsed RF discharges, and can 
be extended to time resolved measurements within the period of an RF 
driven system, complimenting the growing area of phase resolved plasma 
characterization. The methods for expanding the capabilities of these 
probes are presented in this talk as well as examples of where this 
extension of probe capability has provided insight into basic plasma 
phenomena including moderate pressure operation of RF discharges, 
sheath heating, probe perturbation effects on density measurement, 
electronegative plasma instabilities, and the role of plasma edge uniformity 
on power coupling in inductively coupled plasma reactors. This work has 
been supported by the National Science Foundation, U.S. Department of 
Energy, Samsung Electronics, Applied Materials Inc. MKS Instruments and 
the state of North Carolina. 

4:00pm PS+SE-MoA-8 Time-Resolved Electron Energy Distribution in a 
Multi-Frequency Capacitively Coupled Plasma Reactor, C. Kelly, Md. 
Amzad Hossain, D. Kapelyan, D. Ruzic, University of Illinois at Urbana-
Champaign 

This work uses a time-resolved Langmuir probe to measure the electron 
energy distribution function (EEDF) in a capacitively-coupled parallel-plate 
(CCP) plasma reactor. The EEDF completely determines the plasma 
chemistry in a low-temperature plasma, and that is why it is so important 
to obtain. By seeing how the EEDF changes throughout an RF cycle, both as 
a function of time and position, one then knows the extent by which 
altering the RF waveform can affect the energy of the electrons. Often 
industry mixes RF frequencies to alter the plasma -- particularly the ion 
energy distribution at the substrate. Here we add a second frequency in a 
systematic manner and examine the changes in the instantaneous EEDF. We 
also examine the turn on and turn off times of the RF generator itself. 

Specialized circuits were designed for this work to ensure high frequency 
fidelity so digitization at 1.5 GHz is possible and accurate. A set of 
experiments were conducted to show how only altering circuit parameters 
affect the results, and steps were taken to eliminate those effects. Spatial 
variations of the resulting EEDFs were investigated, especially near the edge 
of the CCP reactor, to see which aspects change the most with radius. 

4:20pm PS+SE-MoA-9 Mass Spectral Characterization and Control of 
Plasma Etch Processes, L. Shoer, P. Heil, S. Pursel, Intel Corporation; N. 
Salovich, Edwards  Vacuum; David Shykind, Intel Corporation 

As semiconductor critical dimensions have reached the single-digit 
nanometer scale, reproducible control of etch processes has become 
critically dependent on consistent wafer-to-wafer processing. Nanometer 
feature sizes and atomically thin layers have led to a regime where 
traditional bulk plasma characterization techniques no longer give insight 
into the chemical processes occurring on the wafer. Furthermore, the 
number of moles of reactants on the walls of an etch chamber are greater 

than or equal to the quantity of reactants intended to be etched on a wafer 
itself. Uncontrolled, this situation complicates etch processes, introducing 
hysteretic behavior even assuming an ideal input stream of identical wafers, 
and exacerbates actual wafer-to-wafer variation effects. We show how 
high-speed (subsecond time resolution), non-invasive mass spectrometry of 
plasma cleaning, seasoning and actual etch steps themselves leads to 
improved performance and enhanced mechanistic understanding of plasma 
etch processes. 

4:40pm PS+SE-MoA-10 Development of a Catalytic Probe for the 
Detection of Fluorine Radicals with Applications to Semiconductor 
Manufacturing, Nicholas Connolly, J. Mettler, R. Garza, R. Sankaran, D. 
Ruzic, University of Illinois Urbana-Champaign 

Plasma processing is an essential part of integrated circuit manufacturing, 
with plasma etching, plasma strip, and chamber cleaning being three 
critical steps. All of these steps rely on radicals, highly reactive neutral 
species created in the plasma, to drive the desired etching reactions. 
Because of the importance of radical species in etching reactions and rates, 
quantification of the densities of these species is important for 
understanding plasma etching dynamics. Additionally, spatial resolution of 
radical densities allows specific knowledge of etch dynamics at a substrate 
or a chamber component of interest. 

One technique that has been developed to detect and quantify radical 
species is a catalytic probe, which consists of two thermocouples each 
coated with a different metal. The different metals catalyze the 
recombination of radical species at different rates, leading to a temperature 
difference between the thermocouples. This temperature difference is 
proportional to the density of radical species, and so a radical density can 
be determined. The catalytic probe technique provides in-situ, spatially 
resolved radical densities. This has advantages over techniques which 
gather a line-averaged signal, such as optical emission spectroscopy (OES), 
and measurement methods that require ex-situ analysis, such as coupon 
etch rates. 

Previous studies have applied catalytic probes to the detection of hydrogen 
(H), oxygen (O), and nitrogen (N) radicals.1 To our knowledge, a catalytic 
probe for fluorine (F) has yet to be reported. Here, we present a 
thermocouple-based catalytic probe to determine spatially resolved 
fluorine radical densities in SF6/Ar plasmas. The catalytic activity of zinc, 
copper, and gold is reported. The radical densities determined from the 
radical probes are compared to those determined via actinometry and 
coupon etch rates. These methods also provide verification of the 
recombination coefficient of the probe material and thereby confirm the 
quantitative results of the radical probe. 
 

[1] D. Qerimi, I. Shchelkanov, G. Panici, A. Jain, J. Wagner, and D.N. Ruzic. J. 
Vac. Sci. Technol. A 39, 023003 (2021). 

5:00pm PS+SE-MoA-11 Multi-Diagnostic Investigation of Etching Plasma 
Species in an Industry-Grade Inductively-Coupled Plasma Etcher, Jeremy 
Mettler1, N. Connolly, S. Dubowsky, D. Ruzic, University of Illinois at Urbana-
Champaign 

Plasma etching kinetics and reaction mechanisms often involve complex 
interactions between radical, neutral, and charged species. Optimization of 
etch rate and selectivity for a given process can be tedious without a 
detailed mechanistic understanding of the etching mechanisms, which in 
turn can be difficult to determine without accurate measurements of all 
relevant plasma species. Many diagnostics exist which are able to measure 
some of these species, but each has their own tradeoffs, and none are able 
to measure all species under all conditions. 

In this work we discuss the development of a suite of plasma diagnostics for 
measuring the environment in an etching system, including neutral, 
charged, and radical species. To accurately measure each component of the 
etch process, results from appearance energy mass spectroscopy, optical 
emission spectroscopy, fluorine radical probe analysis, and Langmuir probe 
analysis are combined, with overlap in the sensing capabilities of each 
diagnostic used for cross-validation. The use of multiple independent 
diagnostics with different spatial resolutions and species sensitivities 
provides flexibility and increased confidence in quantitative results. This 
work will present a comparison of results obtained by the individual 
diagnostics across several CF4 based etching conditions in an industry-grade 
inductively-coupled plasma etching tool. Further comparison will be made 
between experimental etching results and 0-D plasma modeling of the 
etching system. 

 
1 PSTD Coburn & Winters Student Award Finalist 
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