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8:20am PS+NS-FrM-1 EUV Lithography Patterning towards Devices Nano 
Scaling, Danilo De Simone, IMEC, Belgium INVITED 

Nowadays, the device scaling driven by the Moore’s law is continuing by the 
deployment of the 0.33NA extreme ultraviolet lithography (EUVL) in high 
volume manufacturing further driven by the need to improve cycle time 
and cost. To further simplify and improve EUV patterning reducing cost and 
enable 2nm technology and below, high NA EUV lithography (0.55NA) is 
under development. At the same time, as the nanoscale is pushed further 
down, the stochastic nature of the patterning process and the thinning 
down of the films become the major patterning roadblocks. To enable the 
high NA technology, new knobs and faster learning cycles on patterning 
process development are needed to improve the process window. This 
presentation will show the latest development on EUV patterning materials 
and their challenges and provide an insight status of overcoming these 
obstacles towards the devices scaling at nanometric level. 

9:00am PS+NS-FrM-3 Break Healing and LER Mitigation for Low Dose EUV 
Exposure, Rémi Vallat, P. Bézard, B. Chowrira, IMEC, Belgium; A. Fathzadeh, 
W. Halim, KU Leuven, Belgium; F. Lazzarino, K. Ronse, IMEC, Belgium 

Challenges introduced with High NA EUV lithography will be defectivity 
management with ultra-thin resists while using low EUV dose1. Reducing 
the density of bridges and breaks is thus a major point of focus for its 
introduction2. Ultra-thin resists, at low EUV dose, may come with high 
bridge/ break density (positive/ negative-tone resist, respectively). In the 
case of bridges, a descum step is traditionally introduced, which creates 
breaks instead (in ultra-thin resists) and further reduces the resist budget 
for underlayer patterning. Therefore, recovering breaks is a strategic 
capability for defect reduction. 
 

The proposed way to recover breaks is to use non-conformal PECVD 
deposition on top of spin-on-glass (SoG). Since, the resist budget is going to 
be ultra-thin, the underlayer beneath will also have to be ultra-thin, leading 
to its failing as an hard-mask (break creation) during transfer into an 
amorphous carbon layer. Depositing extra Silicon-based polymers on top of 
the ultra-thin underlayer addresses that issue, by increasing the hard-mask 
etch budget. However, the polymer must be deposited on SoG, selectively 
to amorphous carbon to prevent the formation of an etch-blocking layer. 
This approach is presented in figure 1. 

The selectivity of deposition is successfully developed, and results are 
shown in figure 2. The underlayer budget is clearly increased using PECVD. 
Also, the reduction in break density is demonstrated in figure 3 using a 
radical ion etching and/or quasi-atomic layer etch into aC, designed to 
maximize the break density in order to easily observe any improvement 
brought by the PECVD. The line-edge roughness is improved as well, due to 
the reduced contribution of breaks. 

[1] L. Meli et al,Proc. SPIE 11609, 116090P (2021) 

[2] P. De Bisschop, J. Micro/Nanolithogr. MEMS MOEMS 16, 041013 (2017) 

9:20am PS+NS-FrM-4 Carbon Resist Microlens Etching in DF-CCP CF4 
Plasmas: Comparison between Modeling and Experiments, P. Ducluzaux, 
Univ. Grenoble Alpes, CNRS, LTM / STMicroelectronics, France; D. Ristoiu, 
STMicroelectronics, France; G. Cunge, Emilie Despiau-Pujo, Univ. Grenoble 
Alpes, CNRS, LTM, France 

Over the past decade, the development of image sensors used in 
smartphones has focused on reducing pixel size to improve photography 
resolution. Microlenses are a key component of these sensors, as they 
focus the incident light on the photodiode, enhancing the sensor's 
quantum efficiency. However, the manufacture of resist microlenses 
requires an etching step in low-pressure fluorocarbon plasmas, in which 
complex chemico-physical reactions can lead to a final 3D shape that is 
difficult to control. 

In this paper, we propose to investigate numerically the influence of 
tunable operating conditions (RF power, pressure, etc.) on the etching of 
carbon resist microlenses in CF4 plasmas, to better understand the link 
between process parameters, plasma properties and the final microlens 
shape. Using a 2D hybrid model (Hybrid Plasma Equipment Model), we 

simulate the CF4 plasma gas-phase in a dual-frequency capacitively coupled 
plasma reactor. We then use the plasma properties obtained from this 
simulation (densities, fluxes, and energies of charged and neutral species) 
as entry parameters for an etching profile model (Monte Carlo feature 
profile module). First, we investigate numerically and experimentally 
(ellipsometry, TOF-SIMS) the impact of pressure (30-200 mT) and RF powers 
(100-1500 W) on the etch rate and on the cross-sectional structure 
(chemical composition, reactive layer thickness) of resist blanket wafers. 
Then, we analyze the impact of these parameters on the etching of 
spherical resist microlenses, comparing the simulated 3D final shape with 
experimental profiles (AFM, SEM) obtained in an industrial reactor. 

Our results show that the low-frequency (13.56 MHz) power increases the F 
penetration in the resist due to an increase in the ion energy, while the 
high-frequency (40 MHz) power increases the etch rate due to an increase 
in the ion flux. The impact of operating conditions on the microlens profiles 
will be discussed in details during the presentation and provide insights into 
the chemico-physical mechanisms involved in carbon resist etching. 

9:40am PS+NS-FrM-5 Investigations of Surface Reaction Mechanisms in 
Euv Induced Hydrogen Plasmas, Tugba Piskin, University of Michigan; V. 
Volynets, S. Nam, H. Lee, Samsung Electronics Co., Inc., Republic of Korea; 
M. Kushner, University of Michigan 

The deployment of extreme ultraviolet lithography (EUVL) is enabling a few 
nm critical sizes in microelectronic processing.In one implementation, the 
EUV photon beams are produced by ablating and ionizing tin droplets with 
a pulsed laser.The ionized tin species emit photons with 13.5 nm 
wavelength—where these photons are collected by reflective optics and 
transferred to the scanner unit.The collector mirror is exposed to the tin 
plasma, which potentially results in a decrease in reflectivity and 
lifetime.Pumping H2 through the EUV chamber can help resolve this 
problem as an in-situ cleaning technique of deposited tin on the mirror. The 
hydrogen slows down fast tin radicals by reacting with them in the gas 
phase and etching. Photoionization of the H2 by the EUV produces a plasma 
which etches the deposited tin on the mirror by producing stannane. 

EUV photons with 92 eV energy are capable of photo-dissociating and 
ionizing hydrogen gas while producing energetic electrons and H atoms. 
Ions, energetic electrons, and photons in turn produce secondary electron 
emission from surfaces, the latter of which can also produce energetic 
electrons.In this work, we computationally investigate the etch rate of tin 
and the redeposition of stannane in a generic EUV lithography tool by the 
EUV produced hydrogen plasma using a modified version of the Hybrid 
Plasma Equipment Model (HPEM).The consequences of secondary electron 
emission from the surfaces by electrons and photons will be discussed.The 
fluxes of hydrogen radicals and ions to the collector mirror are the most 
significant factor for the in-situ cleaning. The energy and angular 
distributions and fluxes to the collector mirror of hydrogen radicals and ions 
for pressures of a few to hundreds of Torr and hundreds of Watts EUV 
power will be discussed. 

Work supported by Samsung Electronics and the US National Science 
Foundation. 

10:00am PS+NS-FrM-6 Area Selective Processing Based on Physisorption 
to Improve Functions of Extreme Ultraviolet Resist, Van Long Nguyen, N. 
Maldonado, G. Denbeaux, C. Vallee, SUNY Polytechnic Institute, Albany 

In semiconductor manufacturing, ~10 nm critical dimensions are already in 
production by using EUV lithography [1]. The smaller critical dimensions 
require better line edge/width roughness (LER/LWR) or local critical 
dimension uniformity (LCDU) of EUV resists to ensure the quality of 
patterning features, as well as device performance. Furthermore, ultrathin 
EUV resists (20- to 40-nm) are currently utilized to minimize the risk of 
pattern collapse, which however results in poor etching selectivity to 
underlying layers for post-lithographic pattern transfer. Recently, employing 
area selective deposition as a post-treatment method on the EUV resist 
patterns has been reported as a promising strategy to improve the function 
of EUV resists [2]. In this research, we tried to improve the local roughness 
and thickness of the EUV resist by developing an area selective (AS) 
processing including both deposition and infiltration based on the 
physisorption mechanism, instead of the conventional chemisorption 
mechanism. We achieved AS physisorption based on the difference in Van 
der Waals interactions of surfaces/bulks with a specific gas molecule. The 
interaction of physisorbed molecules with samples is calculated based on a 
classical model. SO2 gas was chosen based on the theoretical calculation to 
test its selective physisorption capability to the Sn-based resist versus SiO2. 
After SO2 exposure, we observed a significant thickness increase in the case 
of Sn-based resist (Figure S1a) but not in the SiO2 (Figure S1b), as shown in 
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the supplemental document. The observed thickness increase suggested 
SO2 could both selectively physisorbed onto the surface and into the bulk of 
the resist due to its porosity. These selective physisorbed molecules onto 
the surface and into the bulk of the resist are then converted to 
chemisorbed molecules by a dissociation process using energetic Ar plasma 
to complete a cycle of AS deposition and AS infiltration, respectively. 
Ellipsometry, angle-resolved X-ray photoelectron spectroscopy, and atomic 
force microscopy are employed as key techniques to characterize changes 
during and after the AS processing. This work is funded by Semiconductor 
Research Corporation (SRC). 

[1] https://irds.ieee.org/editions/2022/executive-summary for International 
Roadmap for Devices and Systems (IRDS), 2022 Edition. 

[2] Nye, Rachel A., et al. "Enhancing Performance and Function of 
Polymethacrylate Extreme Ultraviolet Resists Using Area-Selective 
Deposition." Chemistry of Materials 35.5 (2023): 2016-2026. 

10:40am PS+NS-FrM-8 Recent Advances in Ga2O3 Material Development 
at AFRL, S. Mou, T. Asel, A. Neal, Y. Kim, Brenton Noesges, A. Charnas, J. Li, 
T. Back, K. Burzynski, B. Newton, A. Green, J. Blevins, Air Force Research 
Laboratory, Materials and Manufacturing Directorate, USA INVITED 

Ga2O3 has been of interest due to its critical electric field (8 MV/cm)[1], its 
ability for native substrates to be grown from the melt, and the ability to 
controllably dope thin films of Ga2O3 via growth methods such as molecular 
beam epitaxy (MBE) and metal-organic chemical vapor deposition 
(MOCVD). All of these properties make Ga2O3 an attractive candidate for 
high power electronic applications and the ability to grow substrates from 
the melt make it economically feasible in this space when compared to 
other materials such as GaN and SiC. The Air Force Research Lab (AFRL) has 
invested into substrate development with Northrup Grumman Synoptics to 
provide a domestic source of substrates. Czochralski grown (010) Fe and Mg 
doped Ga2O3 has been demonstrated up to 2 inch wafers by Northrup 
Grumman Synoptics and challenges in surface polishing have been 
overcome by using a 2 step process that removes subsurface damage and 
produces a surface that is ready for epitaxial growth. AFRL’s in house 
research on epitaxial films via plasma assisted MBE has identified sources 
of unintentional doping during the growth of Ga2O3. It was demonstrated 
that both the oxidation of the Si doping source material and the quartz bulb 
used to provide the oxygen plasma during growth were contributing 
significant amounts of Si in the grown films. By adjusting the plasma power 
to reduce the etching of the quartz plasma bulb we were able to 
demonstrate epitaxial films with unintentional doping levels <1 × 1016 cm-3. 
Control of the intentional Si doping was achieved in collaboration with 
Cornell University by modifying the Si doping source to include a 
“showerhead” to reduce the effect of the oxidation of the Si source 
material[2, allowing control from 8 × 1016 cm-3 to 1 × 1019 cm-3. Additional 
thin film development was done in collaboration with Agnitron on MOCVD 
grown Ga2O3 films. High purity Ga2O3 films were demonstrated using 
trimethylgallium as the source for gallium during the growth. The MOCVD 
grown films’ mobility and carrier concentration were measured via 
temperature dependent Hall Effect at AFRL and exhibited a record electron 
mobility of 23,400 cm2/Vs at 32 K, with a low acceptor concentration of 2 × 
1013 cm-3, further demonstrating the purity of the films grown via this 
method[3]. These results demonstrate the investment that AFRL has in 
Ga2O3 and present the contributions that AFRL has made to the 
development to Ga2O3 material system. 

 
 
 

[1] M. Higashiwaki et al. Appl. Phys. Lett. 100, 013504 (2012). 

 
 
 

[2] J.P. McCandless et al. Appl. Phys. Lett. 121, 072108 (2022). 

 
 
 

[3] G. Seryogin et al. Appl. Phys. Lett. 117, 262101 (2020). 

 
 
 

11:20am PS+NS-FrM-10 Reverse Lift-Off Process to Avoid Sidewall 
Artifacts Resulting from Dry Etching “Challenging” Materials, D. Lishan, 
Plasma-Therm, LLC; V. Genova, Cornell University; S. Norris, Axoft; K. 
Dorsey, Physical Sciences, Inc.; Sabrina Rosa-Ortiz, Plasma-Therm LLC 

This work explores a process to avoid sidewall redeposition issues when dry 
etching materials that do not readily form volatile and desorbing etching 
byproducts under common operating temperatures. Common dry 
patterning approaches for these challenging thin films use methods relying 
on physical mechanisms (i.e., sputtering with accelerated ions) and often 
result in material being redeposited on the sidewalls of the masking 
material. Upon removing the mask, the resputtered sidewall material 
remains and forms features projecting above the material. These features, 
sometimes referred to as rabbit or dog ears, fences, and veils, may fall over, 
break and cause particles, or penetrate over layers. We present an etching 
approach that avoids these issues. Materials such as Pt, Au, Ni, LiNbO3, Cu, 
Ni, Fe, Mn, Co, Mn, PZT, ScAlN, and perovskites fall in the category of 
“challenging” to etch materials and impact applications such as MRAM, 
PiezoMEMS, quantum devices and photonics. 
 

Lift-off patterning requires line-of-sight deposition which is typically an 
evaporative process that constrains thermal budgets and materials that can 
be deposited. We discuss a technique derived from this well-known 
additive method of patterning thin metal layers but using a subtractive 
approach. In this “reverse -lift” off approach, a layered structure with an 
undercut in a sacrificial layer is also used. Following etching, the material 
that was sputter etched and redeposited on sidewalls is removed along 
with the sacrificial layer. Unwanted redeposition is avoided with the proper 
choice of sacrificial layer material, mask, and undercut structured or with 
familiar lift-off resist patterning (LOR). Importantly, the dry etching can be 
done in common parallel plate RIE and ICP configurations and does not 
require an ion gun source, thus making the method more accessible. 
 

Results demonstrate physically etching a difficult material without the 
consequences of resputtered material. Pt was used as a test vehicle with 
film thicknesses up to 200 nm. Positive results were obtained with LOR 
patterning, with SiO2 as the mask with a Si sacrificial layer, and with a Cr 
sacrificial layer. Both IBE and ICP configurations were used with similar 
results showing that the expected feature dimensions were maintained 
without the profile changes typically observed with tilt and rotation IBE. 
Modeling considered feature spacing, resputter distribution (cosine 
ejection), and incident ion angles to better understand the limits and 
dimensions of the lift-off structure. This work offers a process technique 
that can solve the issue of dog ears when plasma etching low or nonvolatile 
materials. 

 
 

11:40am PS+NS-FrM-11 Control of Ge/Si Core/Shell Nanoparticles Growth 
In Pulsed Nonthermal Plasmas, Yifan Gui, J. Polito, M. Kushner, University 
of Michigan 

Core/Shell nanoparticles(CSNPs) are a type of nanomaterial that has the 
characteristic structure of a core and an outer shell composed of distinct 
materials. CSNPs have received increasing attention over the past decade 
due to their tunable optical properties and wide applicability in the 
biomedicine, semiconductor and catalyst fields. The major challenges in 
synthesizing CSNPs with consistent specifications lie in the variation of size 
uniformity, core and shell purity as a result of diverse operating conditions. 
While continuous-wave nonthermal plasma approaches for synthesis of 
CSNPs have enabled crystalline growth at low reactor temperatures, pulsing 
the plasma could give an edge in CSNPs production by addressing these 
issues. Both computational and experimental prior works have 
demonstrated the capability of pulsed nonthermal plasma in synthesizing 
nanoparticles with improved size uniformity1,2. 

The aim of this work is to computationally investigate the consequences of 
pulsed power nonthermal plasmas on size uniformity and core/shell purity 
of Si/Ge CSNPs using the Hybrid Plasma Equipment Model (HPEM) coupled 
with DTS Dust Transport Simulation Module (DTS). The test system is an 
inductively coupled plasma (ICP) having two plasma sources intended to 
enhance CSNP size uniformity while utilizing separate core and shell 
synthesis zones for better core/shell purity control. CSNPs are produced 
under operating conditions of a few Torr, 10 W of ICP power with pulse 
period of 50 µs, with Ar/GeH4 and Ar/SiH4 gas mixtures flowing from top 
and middle inlets. The consequences of process parameters such as pulse 
period, duty cycle and ICP power, and the corresponding impacts on CSNP 
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properties will be discussed and compared to CSNP properties resulting 
from continuous-wave operation. 

Work supported by Army Research Office MURI Grant W911NF-18-1-0240, 
the National Science Foundation (PHY-2009219), and the Department of 
Energy Office of Fusion Energy Science (No.DE-SC0020232). 

1S. J. Lanham, et al. Journal of Applied Physics 132, 073301 (2022) 

2J. Schwan, B. Wagner, et al. J. Phys. D: Appl. Phys. 55, 094002 (2022) 
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