Electrical and Chemical Effects of Metal Contacts to β-Ga₂O₃ Surfaces

Luke A. M. Lyle^{1,2}, Kunyao Jiang³, Elizabeth F. Favela³, Stephen D. House^{4,5}, Judith C. Yang^{4,5,6}, Kalyan K. Das⁷, Lisa M. Porter³

¹ Electronic Materials and Devices Department, Applied Research Lab, Pennsylvania State University, University Park, PA

²Materials Science and Engineering Department, Pennsylvania State University, State College, PA ³ Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

⁴ Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States

⁵ Environmental TEM Catalysis Consortium (ECC), University of Pittsburgh, Pittsburgh, Pennsylvania, United States

⁶ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, United States

⁷ Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, United States

Abstract:

Over the last decade significant progress has been demonstrated for β -Ga₂O₃, with its ultrawide bandgap of 4.6-4.8 eV, controllable range of n-type, shallow dopants (Sn, Si, Ge), and a scalable melt-growth process allowing the production of large-area, native substrates this material has garnered strong interest for applications as UV photodetectors and high-power electronics. A critical piece of development for ultrawide bandgap materials is the optimization of the metal-semiconductor interface for high-power applications. This talk focuses on the electrical properties of various metallizations to differently oriented β -Ga₂O₃ crystals and focuses on the resulting chemistry of certain metal-semiconductor interfaces.

The Schottky barriers of Ti/Au, Mo, Co, Ni, Pd, and Au on (100) β -Ga₂O₃ substrates were analyzed using a combination of current-voltage (J-V), capacitance-voltage (C-V), and current-voltage-temperature (J-V-T) measurements. The ideality factors and Schottky barrier heights from J-V and C-V methods are documented and discussed. J-V-T measurements of Ti/Au, Co, and Pd diodes reveal inhomogeneity of the Schottky energy barrier. These combined results reveal a strong positive correlation between the calculated Schottky barrier heights and the metal work functions: the index of interface behavior, S, for J-V and C-V data. Additionally, Ti and Au metallizations reveal peculiar electrical properties (higher ideality factors, different J-V and C-V Schottky barrier heights, etc) and further characterizations are pursued.

Au contacts to (100) β -Ga₂O₃ were subsequently examined with transmission electron microscopy (TEM) due to the electrical properties exhibited via J-V and C-V measurements. The contacts exhibited a chemical reaction with void formation 5-20 nm below the Au/ β -Ga₂O₃ interface, a reacted region at the interface that is structurally dissimilar to the bulk β -Ga₂O₃ structure, the presence of Ga interstitials diffusing to the metal-semiconductor interface, and EDS mapping reveals Ga diffusion into the Au overlayer.

Chemical measurements of Ti/(010) and Ti/(001) β -Ga₂O₃ contacts were examined with x-ray photoelectron spectroscopy (XPS). XPS revealed partial Ti oxidation at both interfaces in the as-deposited condition, with more Ti oxidation on the (001) β -Ga₂O₃ epilayer surface than the (010) β -Ga₂O₃ substrate surface. The amount of oxidized Ti increased with annealing temperature. J-V and C-V measurements of contacts made from these devices reveal a strong orientation dependence of the electrical properties of Ti/ β -Ga₂O₃ diodes.