Development of nanoendoscopy-AFM for visualizing intracellular nanostructures of living cells

<u>Keisuke Miyazawa</u>¹, Marcos Penedo², Naoko Okano¹, Hirotoshi Furusho¹, Takehiko Ichikawa¹, Mohammad Shahidul Alam¹, Kazuki Miyata¹, Chikashi Nakamura³ and Takeshi Fukuma¹
¹WPI-NanoLSI, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan,
²EPFL, Lausanne, Switzerland, ³AIST, Tsukuba, Ibaraki 305-8565, Japan.

Fig. 1: (a) Measurement principle of the nanoendoscopy based on the 3D-AFM technique. (b) SEM image of the FIB milled Si tip. (c) Force curves obtained on the living cell. (d) Optical microscopy image of the HeLa cell, and (e) 3D force image measured in the red line area of (d). All images are taken from [1].

References:

[1] M. Penedo, K. Miyazawa, T. Fukuma et al., Science Advances 7 (2021) eabj4990