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8:20am PS1+MS+SS-FrM-1 Helium and Hydrogen Plasmas Interaction with 
Si-Based Materials for Advanced Etch Applications: Insights from MD 
Simulations, Emilie Despiau-Pujo, V. Martirosyan, F. Pinzan, Univ. 
Grenoble Alpes, CNRS, LTM, France; F. Leverd, ST Microelectronics, France; 
O. Joubert, Univ. Grenoble Alpes, CNRS, LTM, France 

Featuring ultrathin layered materials in complex architectures, advanced 
nanoelectronics structures must be etched with a nanoscale precision and 
a high selectivity to preserve the electronic properties of active layers. 
Plasma-induced damage and reactive layers formed during the etch 
process must thus be carefully controlled, a challenge which cannot be 
addressed by conventional continuous-wave plasmas.To achieve uniform 
and damage-free etching, one possible route is to use sequential ion 
modification and chemical removal steps. In the first step, the material to 
be etched is exposed to a hydrogen (H2) or helium (He) CCP or ICP plasma; 
in a second step, the modified layer is selectively removed by wet cleaning 
(HF bath) or exposure to gaseous reactants only (eg. NF3/NH3 remote 
plasma). In this paper, Molecular Dynamics (MD) simulations are 
performed to study the interaction between He and H2 plasmas with Si, 
Si3N4 and SiO2 materials. The objective is to better understand the light ion 
implantation step, and clarify the influence of the ion energy and ion dose 
on the structural and chemical modifications of the surface. Simulations of 
low-energy (15-200 eV) He+ and Hx

+ bombardment lead to a self-limited ion 
implantation, followed by the formation of a modified layer of constant 
thickness at steady state. The modified layer thickness increases with the 
incident ion energy and only few sputtering is observed in the ion energy 
range considered here. The detailed structure of the modified materials at 
steady state will be discussed and compared during the presentation. 
Simulation predictions will also be confronted to experimental results of 
He+ and H+ implantation of Si3N4 and SiO2 layers, followed by HF wet 
cleaning. 

8:40am PS1+MS+SS-FrM-2 Efficient Parametric Nonlinear Model 
Reduction of Low Temperature Plasma Applications, Abhishek  Verma, 
Applied Materials Inc.; K. Bera, S. Rauf, Applied Materials, Inc. 

Low temperature plasma simulations are playing an increasingly important 
role in system discovery, design and decision making in industrial 
applications, with greater demands for model fidelity. Often, high fidelity 
simulation models necessitate fine spatiotemporal resolution, coupled 
multiphysics etc., leading to higher computational cost. This precludes the 
integration of such models for many important scenarios where the models 
are required to be simulated very rapidly and multiple times. To overcome 
this challenge, we present a deep learning based non-linear model order 
reduction method used to develop surrogate models for low temperature 
plasma applications. We propose a computationally practical approach for 
model order reduction that is non-intrusive and purely data driven in 
nature, using convolutional autoencoders and recurrent neural networks 
from deep learning. Our numerical experiments on radio frequency 
powered capacitively coupled plasmas shows that deep learning-based 
model can learn an efficient latent space representation of spatial and 
temporal features of plasma dynamics. The learning data is generated by 
the full order model that includes continuity equations for charged and 
neutral species, drift-diffusion approximation for electron flux, momentum 
conservation equation for ions coupled with Poisson’s equation. The 
proposed method is extended to parametric model by embedding 
parametric information into the latent space for broader applications. 
Finally, we demonstrate the effectiveness of proposed approach over 
linear-subspace method for low temperature plasma applications. 

9:00am PS1+MS+SS-FrM-3 Novel Approaches to Generate Missing Data 
for Plasma Chemistry Modelling , Sebastian Mohr, Quantemol Ltd., UK; M. 
Hanicinec, A. Owens, J. Tennyson, University College London, UK 

Plasma simulations are a standard method in both industrial and academic 
settings to optimise plasma processes and gain a better understanding of 
the underlying physical and chemical processes. To get useful results, 
comprehensive and reliable data on chemical processes in the plasma are 
vital. These usually need to be collected from multiple sources including 

journal articles. To shorten this process, several centralised plasma 
chemistry databases were collected in recent years. The Quantemol-DB 
database [1] started as simply a collection of reaction data. Since then it 
has been enhanced by tools to quickly collect and test data for specific gas 
mixtures such as an automatic set generator and a global model. Here, we 
introduce new additions to this tool set. 

While for some commonly used gases such oxygen or CF4, vast data on 
heavy particle reactions are available, they are missing for more exotic or 
newly used gases. In such cases, reactions are usually included by analogy 
to known gases, including the rate coefficients for these estimated 
reactions. However, the rate coefficients can actually differ significantly for 
similar reactions between different molecules. This is especially true for 
neutral-neutral reactions which can have a significant influence on the 
chemical composition of the plasma. Ab initio calculations are very time-
intensive if possible at all, so to get better estimates of missing rate 
coefficients, we developed and tested a machine learning regression model 
[2] which gives rate coefficients for binary heavy particle reactions based 
on fundamental physical and chemical properties of the reactants and 
products. 

Apart from reactions between particles, radiative transitions of excited 
states also play an important role in plasmas. They determine the density 
of excited states and provide the flux of photons to surfaces which might 
induce additional surface reactions. Furthermore, optical emission spectra 
are an important diagnostic to obtain plasma parameters. In order to 
incorporate radiative transitions into our set generation tools, we have 
created a new database of atomic and molecular lifetimes called LiDa 
which is linked to QDB and enhances our global model to allow for excited 
state lifetimes. In due course we will also provide plasma emission fluxes. 

[1] Tennyson et al., Plasma Sources Sci. and Technol.26, 055014 (2017) 

[2] https://github.com/martin-hanicinec-ucl/regreschem 

9:20am PS1+MS+SS-FrM-4 Particle-in-Cell Modeling of Electron-Beam 
Generated Low Electron Temperature Plasma, Shahid Rauf, Applied 
Materials, Inc.; D. Sydorenko, University of Alberta, Canada; S. Jubin, W. 
Villafana, S. Ethier, A. Khrabrov, I. Kaganovich, Princeton University Plasma 
Physics Lab 

Plasmas generated using energetic electron beams are known to have low 
electron temperature and plasma potential, attributes that are particularly 
useful for atomic-precision plasma processing. [1] It has been 
demonstrated that electron beam plasmas cause significantly lower 
degradation of single layer carbon nanotubes than conventional radio-
frequency plasmas. [2] In addition, they have been used to etch materials 
with atomic precision. [3] Electron beam produced plasmas are typically 
confined using a static magnetic field and operated at low gas pressures. 
Previous hybrid modeling of these plasmas confirmed that plasma 
transport can be non-classical in this parameter regime. [4] The electron 
transport coefficients were empirically tuned in this hybrid model using 
experimental measurements, and this hybrid model is only expected to be 
valid over a narrow range of gas pressure and magnetic field. A self-
consistent 2-dimensional particle-in-cell model of electron beam produced 
plasmas is described in this paper. The model examines the creation and 
evolution of plasma in low pressure (10 – 40 mTorr) Ar gas on injection of 
an energetic electron beam (2 keV). Low frequency waves are initially 
observed as the plasma forms and expands across the magnetic field. 
These waves radiate outwards from the beam axis towards the chamber 
walls. The waves gradually disappear as the plasma fills the chamber 
volume. The final steady-state plasma is well-confined by the magnetic 
field with the plasma more constricted around the beam axis at lower 
pressure and higher magnetic field. The electron temperature is less than 1 
eV for the range of conditions examined. Physical and energy transport in 
the plasma (i.e., ambipolar diffusion and thermal conduction) are observed 
to scale differently with magnetic field and gas pressure. The charged 
species density is, for example, found to be more confined near the 
electron beam axis than the electron temperature. The effect of gas 
pressure, magnetic field and beam current are examined in the paper. The 
impact of these parameters on electron density, plasma potential and 
electron temperature are found consistent with probe-based experimental 
measurements. [4] 

[1] Walton et al., ECS J. Solid State Sci. Technol. 6, N5033 (2015). 

[2] Jagtiani et al., J. Vac. Sci. Technol. A 34, 01B103 (2016). 

[3] Dorf et al., J. Phys. D: Appl. Phys. 50, 274003 (2017). 

[4] Rauf et al., Plasma Sources Sci. Technol. 26, 065006 (2017). 
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9:40am PS1+MS+SS-FrM-5 Modeling Edge Effects in Wafer Etching with 
VSim, Daniel Main, J. Cary, T. Jenkins, Tech-X Corporation 

Plasma processing chambers for the etching of wafers are often used to 
create a uniform etch along most of the wafer. In such a chamber, a plasma 
is created using a RF source via Capacitive Coupling (CCP) or Inductive 
Coupling (ICP). The source region is often far from the wafer (thousands of 
electron Deybe lengths) so that the plasma is nearly uniform for most of 
the chamber.Therefore, the physics that requires a kinetic approach occurs 
near the wafer (within a few hundred Debye lengths).An important part of 
the process is the acceleration of the ions due to the sheath that forms 
near the wafer. However, the discontinuity in the boundary near the edge 
of the wafer leads to a non-uniform sheath and hence non-uniform ion 
velocities impacting the wafer.One way to make the sheath more uniform 
is to place a “focus ring” (FR) near the wafer edge. To model the essential 
physics near the wafer, including the effect of the FR on the sheath 
dynamics, we have used the electromagnetic, fully kinetic, particle-in-cell 
simulation package VSim.The simulation includes electrons, argon ions and 
neutral argon gas. We also include collisions between electrons and neutral 
species, secondary emission off the wafer, and the self-consistent 
calculation of the electric field, including a proper inclusion of the wafer 
and FR dielectric constants. Since the electric field is determined by 
Poisson’s equation, including a full kinetic treatment of the electrons is 
essential for computing the sheath physics, and hence ion dynamics, 
correctly.Because of the small spatial and time steps required for a fully 
kinetic model, we include about half the wafer up to the edge and about 
200 Deybe lengths above the wafer. We inject both electrons and ions 
(modeled as drifting Maxwellians) at the boundary opposite the wafer 
using incoming-flux boundary conditions, which ensure a smooth transition 
from the assumed infinite plasma reservoir outside the simulation into the 
simulation domain. We use Rejection-Sampling theory to compute the 
correct incoming-flux velocities of the injected particles. The boundary that 
includes the wafer is an absorbing boundary; electrons and ions 
accumulate on the dielectrics at this boundary. We show that elastic 
collisions tend to create a more symmetric Ion Angular-Energy Distribution 
(IAED) function about the normal. Finally, we demonstrate the role the 
focus ring has on the IAED and sheath dynamics. 

10:00am PS1+MS+SS-FrM-6 A Study on Dielectric Material Etching in 
Cryogenic Process Based on Atomistic Simulation, Junghwan Um, Yonsei 
University, Korea; S. Cho, Samsung Electronics Co., Inc., Republic of Korea; 
K. Kang, Yonsei University, Korea 

The adsorption of H2, H2O and HF in each membrane was calculated using 
molecular dynamics and DFT as parameters necessary to know the 
adsorbate concentration on the surface according to the temperature of 
SiO2 and Si3N4. After obtaining the parameters for reaction rate of the 
pathway in which the chemical reaction of each film material appears, the 
reaction rate according to the surface temperature of the film material was 
calculated using an analytic model and previously reported experimental 
results. As a result, the reaction rate according to the surface temperature 
of SiO2 and Si3N4 was obtained, and the reaction rate increased by 
decreasing the temperature was presented as a quantitative value. Finally, 
through the results of this study on the temperature dependence of the 
surface reaction, the understanding of the cryogenic process was helped, 
and the overcoming of aspect ratio dependent etching in deep contact was 
considered. 

10:20am PS1+MS+SS-FrM-7 Machine Learning Based Model for a RF 
Hollow Cathode Discharge, K. Bera, A. Verma, Sathya Ganta, S. Rauf, 
Applied Materials, Inc. 

Radio-frequency (RF) hollow cathode discharges (HCD) at low to moderate 
pressures have gained significance for advanced plasma processes in the 
semiconductor industry. HCDs form in cylindrical cavities in the cathode, 
and one can use an array of such cavities to create large area HCDs. A 
neutral-network based reduced order model for HCDs is discussed in this 
paper, where this reduced order model is trained using results from 
Particle-in-Cell/Monte Carlo Collision (PIC/MCC) simulations of single 
hollow cathode holes. In this PIC/MCC model, using charge density of 
particles, Poisson equation is solved for electric potential, which yields the 
electric field. Using this electric field, all charged particles are moved. The 
PIC/MCC code considers particle collisions with each other and with neutral 
fluid using a Monte Carlo model. RF hollow cathode behavior is simulated 
and characterized for different hole size, pressure, RF voltage, frequency, 
and secondary electron emission coefficient. The plasma penetrates inside 
the hollow cathode hole with increase in pressure, leading to plasma 
enhancement. The synergistic effect of RF sheath heating and secondary 
electron acceleration on hollow cathode discharge has been observed. For 

improved computational efficiency, a reduced order modeling framework 
has been developed based on neural network using plasma model 
parameters. Different methodologies have been explored in selecting and 
preprocessing physical data to train and validate the neural network. The 
temporal variation of voltage-current characteristics as well as that of 
spatial profile of plasma variables (density, temperature, etc.) have been 
used to train the neural network model. The predictions of trained neural 
network model compare reasonably well with that of the underlying 
physical model observations in PIC/MCC simulations. The neural network 
framework is being applied to determine the collective behavior of an array 
of RF hollow cathode holes for large area HCDs. 

10:40am PS1+MS+SS-FrM-8 Molecular Dynamics Simulations of Plasma-
Enhanced Atomic Layer Etching of Silicon Nitride Using 
Hydrofluorocarbon and Oxygen Plasmas, Jomar Tercero, Osaka University, 
Japan; A. Hirata, Sony Semiconductor Solutions Corporation, Japan; M. 
Isobe, K. Karahashi, Osaka University, Japan; M. Fukasawa, Sony 
Semiconductor Solutions Corporation, Japan; S. Hamaguchi, Osaka 
University, Japan 

Molecular dynamics simulations were performed to study the influence of 
oxygen (O2) in the hydrofluorocarbon (HFC) plasma-enhanced atomic layer 
etching (ALE) of silicon nitride (Si3N4). ALE is known to etch a surface with 
atomic-scale control and precision. Its in-depth understanding is essential 
for the advancement of fabrication technologies for semiconductor 
devices. It was presented earlier that such a Si3N4 ALE process can lead to 
an etch stop due to the accumulation of C atoms on the surface [1]. It was 
then shown that, by introducing an O2 plasma irradiation step, a stable etch 
was observed and the etch stop was prevented [2]. In this study, molecular 
dynamics (MD) simulations were used to clarify the interaction 
mechanisms of an O2 plasma with the modified Si3N4 surface during the 
HFC-based ALE process. To do this, CH2F radicals were used in the 
adsorption step. It was then followed by Ar+ bombardment in the 
desorption step. Subsequently, O2 plasma was introduced as an additional 
step to help the removal of the remaining HFC species. This series of steps 
corresponds to one ALE cycle. Our simulations have shown that, during the 
desorption step of the first ALE cycle, HFC species assist the removal of the 
Si and N atoms of the Si3N4 by the formation of volatile by-products such as 
SiFx, CNx, and NHx species. On the other hand, due to the momentum 
transfer from incident Ar+ ions, some HFC species were pushed into the 
bulk layer, forming chemical bonds with Si and N atoms therein. By the 
addition of the O2 plasma irradiation step, it was observed that HFC species 
interact with O atoms adsorbed on the surface. The removal of C atoms 
was also enhanced by the formation of COx. In this way, our MD 
simulations have shown that the additional O2 plasma irradiation step 
prevents the etch stop and allows stable Si3N4 ALE cycles. 

References 

[1] A. Hirata, M. Fukasawa, K. Kugimiya, K. Nagaoka, K. Karahashi, S. 
Hamaguchi, and H. Iwamoto, Journal of Vacuum Science & Technology A, 
38, 062601 (2020). 

[2] A. Hirata, M. Fukasawa, J.U. Tercero, K. Kugimiya, Y. Hagimoto, K. 
Karahashi, S. Hamaguchi, and H. Iwamoto, Japanese Journal of Applied 
Physics (2022). 

11:00am PS1+MS+SS-FrM-9 Understanding Plasma Etch Mechanism of 
Low-k Materials Under Low Temperature Substrates with Fluorine-Based 
Precursors, Daniel Santos, Tokyo Electron America; C. Vallee, SUNY 
Polytechnic Institute, Albany; P. Wang, Tokyo Electron America 

Plasma etching of ultra-low-k materials at aggressive back end of line 
(BEOL) nodes has become increasingly challenging as plasma induced 
damage becomes a significant challenge to overcome. Conventional 
reactive ion etch (RIE) processes usually occur at a temperature near room 
temperature in which diffusion of radicals will damage low-k materials 
surface. Alternatively, to limit diffusion mechanisms and prevent damage, 
cryogenic cooling of a substrate sub <-100 C can be used. The purpose of 
this research is to understand how to leverage the range between room 
temperature and cryogenic temperatures when using fluorine-based 
plasmas. 

For this work we use a 300mm dual frequency TEL CCP chamber equipped 
with a low-temperature electrostatic chuck to conduct our experiments. 
Furthermore, we use in-situ OES, ex-situ XPS, and ellipsometry to 
understand the plasma surface interactions and observe change in etch 
rates, fluorine content and composition. We find the choice of between 
different Fluorine molecules plays a critical role in changing the surface 
fluorination in dielectric materials, and opposite results have been 
observed. When using NF3 the etch rate of low-k 3.0 increases from 200 nm 
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min-1 at 15C to 350 nm min-1 at -40C but the etch rate of thermal oxide 
remains 10 nm min-1 at all ranges between which displays an increase in 
selectivity between the films. Opposite of that, when using C4F8 we observe 
the etch rate decrease from 135 nm min-1 at 15C to 90 nm min-1 at -40C 
with decreasing temperature suggesting that we enter a higher 
polymerization regime. We have concluded that different temperature 
threshold can be obtained, for same plasma parameters, for switching from 
deposition to etching regime and this behavior depends on fluorine 
molecule and substrate material composition, which also induces a 
modification of the selectivity. Using this approach, we try to understand 
the plasma surface reactions for the fluorine molecules as a function of 
their triple point temperature, surface saturation with F atoms, and 
condensation mechanisms. 

11:20am PS1+MS+SS-FrM-10 Plasma-Assisted Atomic Layer Etching of 
Silicon Nitride with Unfragmented Fluorocarbons, Chon Hei Lam, M. 
Carruth, University of Texas at Austin; Z. Chen, J. Blakeney, P. Ventzek, S. 
Sridhar, Tokyo Electron America Inc.; J. Ekerdt, University of Texas at Austin 

The self-limiting behavior in atomic layer etching (ALE) processes promise 
to deliver atomic scale fidelity for three-dimensional device fabrication. 
Plasma-assisted ALE processes typically alternate cycles of chemical 
modification to weaken the surface bonds followed by ion bombardment 
to remove a limited amount of material. ALE may provide fine control over 
the etch rate through the “layer-by-layer” process and can limit physical 
damage to the substrate. Since silicon nitride films are a likely component 
in self-aligned multiple patterning schemes, we explore silicon nitride ALE 
by utilizing undissociated fluorocarbon (CF4 and CHF3) adsorption followed 
by argon ion bombardment. The impact of gas precursors, energetic ion 
energy, substrate temperature, and the nature of the surface chemical 
modification are discussed. We follow the surface chemistry and monitor 
structural damage during ALE with various in situ probes (X-ray 
photoelectron spectroscopy and spectral ellipsometry). Using CHF3 to 
illustrate surface modification and argon ion bombardment to affect 
removal in concert with the spectroscopic probes we demonstrate changes 
to the adsorbed layer during bombardment. The ALE steps are performed 
at 100 °C (Fig 1). The silicon nitride films were exposed to CHF3 at 4 mTorr 
for 60 s in the fluorocarbon adsorption step followed by argon ion 
bombardment. The F 1s peak appears after argon ion bombardment (4 
min, 200 eV) at 100 °C. After the first ALE cycle, a C-F bond was detected in 
C 1s spectra at high binding energy (300 eV) (Fig 2a). The energetic argon 
ions fragment the fluorocarbon and activate the interaction between 
fluorine and silicon. The ALE process also leads to nitrogen depletion which 
is shown in the N 1s spectra (Fig 2d). After extended ALE cycles, the Si 2p 
peak shifts to higher binding energy and it might indicate that SiOx and SiFx 
formed through the ALE cycles. The intensity of O increases and the 
intensity of N decreases along the ALE cycles. The fluorine signal was 
detectable and the signal in C 1s spectra was barely noticeable, which 
suggest fluorine remains after the ALE process and it combines with silicon 
in the process. The ellipsometry result (Fig 1) shows a consistent removal 
amount per cycle of 1.4 Å/cycle over the 20 ALE cycles. 

11:40am PS1+MS+SS-FrM-11 Time Resolved Ion Energy Distribution in 
Pulsed Inductively Coupled Argon Plasma with/without DC Bias, Zhiying 
Chen, J. Blakeney, M. Carruth, P. Ventzek, Tokyo Electron America Inc. 

Pulsed plasmas have emerged as promising candidates as means for 
precise control of ion energy/angle dependent surface processes and 
surface chemistry during plasma process, which are the key to 3nm and 
beyond device fabrication. The ion energy distribution functions (IEDFs) 
and ion fluxes over a pulsed period are important to understand as they 
directly influenced feature profile, damage and selectivity. We have 
developed an advanced plasma diagnostics (APD) system with advanced 
pulsing capability, including source, bias and synchronous pulsing. It is a 
compact inductively coupled plasma system with RF source frequency of 
13.56 MHz intended to diagnose the general behavior of biased high-
density plasmas. We report the effect of pulse frequency, RF duty cycle and 
power, DC duty cycle and voltage, and discharge pressure on the IEDFs and 
ion flux over a pulse period on the APD system. The time-resolved IEDFs 
and ion flux were measured using a retarding field energy analyzer. The ion 
energy transitions in a pulsed period from plasma ignition stage to stable 
stage and from plasma in glow period to afterglow period are studied. The 
results indicate the ion energy and ion flux are tailored by RF pulsing and 
RF-DC pulsing. The time-resolved IEDF demonstrates the merits of pulsing 
to precise control ion energy and flux, and the ion energy spread narrowed 
by pulsed plasma. 
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