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1:40pm BI+AS+HC+SS-MoA-1 Bioinspired Approaches to Prevent Microbes 
and Fouling on the Surface of Membranes, R. Shah, T. Goodwin, Jessica 
Schiffman, University of Massachusetts Amherst INVITED 

The reliability and ease of operation of membrane-based water purification 
systems has led to their increased use in water and wastewater treatment. 
However, water and energy are mutually dependent critical resources; to 
produce clean water requires energy and the production of energy requires 
large volumes of water. Unfortunately, when microorganisms and other 
foulants accumulate on the surface of membranes and block their pores, 
more energy is required to operate the separation process even though its 
productivity is significantly reduced. The overall goal of this talk is to 
illustrate how bioinspired approaches can be used to enhance the 
properties of ultrafiltration membranes. Our first approach will 
demonstrate how we controlled the deposition of the bioinspired “glue” 
dopamine in order to fabricate ultrafiltration membranes with retained 
selectivity and pure water flux. Molecules for polymerization were 
immobilized on the membrane’s surface yet prevented from attaching to 
the membrane’s pores due to a backflow of nitrogen gas achieved using 
simple in-house constructed equipment. If time allows, I will provide an 
overview of our recent exploration into how pitcher plant inspired 
immobilized liquids can dramatically increase the fouling resistance of 
membranes that have consistent flux over at least ten cycles of operation. 
Biofouling during membrane-based operations is a major challenge and we 
suggest that there are numerous bioinspired approaches that can address 
this problem. 

2:20pm BI+AS+HC+SS-MoA-3 Antibiotic-Free Liquid Layers Decrease 
Bacterial Adhesion on Catheters In Vivo, C. Fong, University of Maine; M. 
Andersen, A. Flores Mireles, Notre Dame; Caitlin Howell, 5737 Jenness Hall 

The rise of antibiotic resistance is one of the greatest global public health 
challenges of our time. Although new antibiotics continue to be discovered, 
the pace is slowing while the rate of discovery of new antibiotic-resistant 
organisms continue to grow at an alarming rate. New, non-chemical 
approaches are needed which can reduce bacterial surface attachment and 
growth without leading to further resistance. Over millions of years, Nature 
has developed several ways to mechanically direct or stop bacterial 
growth, leading to materials-based antibacterial mechanisms which are 
elegant, effective, and difficult for bacteria to overcome. One of these 
approaches, immobilized liquid layers, functions via the use of a mobile, 
dynamic, and sacrificial physical barrier between the bacteria and the 
surface which they may contaminate. In vitro proof-of-concept 
experiments using urinary catheters— one of the most common and 
infection-prone medical devices—liquid layers were found to reduce 
bacterial adhesion by 99% compared to untreated controls. In tests in vivo, 
the system performed beyond expectations, reducing not only bacterial 
adhesion but overall surface protein contamination as well. The results 
provide hope that continuing to engineer materials-based approaches to 
stop bacterial adhesion and growth can help us to stay ahead of antibiotic 
resistance. 

2:40pm BI+AS+HC+SS-MoA-4 Discovery of Cell Instructive Materials for 
Next Generation Medical Devices: Exploring Microtopography and 3D 
Shapes, Morgan Alexander, University of Nottingham, UK 

The polymer biomaterials found in the clinic today are dominated by 
materials that have been chosen largely on the basis of their availability 
and mechanical properties. It would be desirable to design our way 
forward from this situation to new and better biomaterials chosen for 
positive interactions with surrounding cells and tissues. Unfortunately, our 
understanding of the interface between most materials and biology is poor. 
Only in isolated cases is there a good understanding of cell-material surface 
interactions and fewer still where material-tissue interactions are well 
characterised and understood. 

This paucity of information on the mechanism of biomaterial interactions 
within the body acts as a roadblock to rational design. Consequently, we 
have taken a high throughput screening approach to discover new bio-
instructive polymers from large chemical libraries of synthetic monomers 
presented as micro arrays. [1,2] This approach, akin to engineering 

serendipitous discovery, has resulted in novel materials which we have 
taken all the way from the lab to the clinic. 

More recently we have extended our approach to explore the 
opportunities offered by micro topography and 3D shape manipulation to 
provide bio-instructive cues topography to immune cells, stromal cells and 
pathogenic bacterial cells. To do this we have developed and adopted a 
range of high throughput screening platforms, including theTopoChip[3], 
ChemoTopoChip [4] and used 3D printing to produce the ArchiChip [5]. The 
talk will focus on these topographic platforms and our findings, in 
particular novel topographies that reduce bacterial biofilm formation and 
provide beneficial host cell responses which has the potential to reduce 
infection in medical device implantation.[6] 
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3:00pm BI+AS+HC+SS-MoA-5 Development of a Method for Visualizing 
Nanometer-Scale Three-Dimensional Structures of Chromosomes by 
Three-Dimensional Atomic Force Microscopy, Ryohei Kojima, K. 
Miyazawa, K. Teramae, Kanazawa University, Japan; T. Sumikama, PRESTO, 
JST, Japan; M. Meguro, Research Center for Experimental Modeling of 
Human Disease, Kanazawa University, Japan; K. Imadate, Osaka University, 
Japan; N. Okano, Kanazawa Unversity, Japan; S. Horike, Research Center for 
Experimental Modeling of Human Disease, Kanazawa University, Japan; K. 
Hirahara, Osaka University, Japan; T. Fukuma, Kanazawa University, Japan 

Three-dimensional atomic force microscopy (3D-AFM) is capable of 
obtaining 3D force images at solid-fluid interface in sub-nanometer scale. 
In the previous research, 3D-AFM visualized molecular-scale hydration and 
flex molecular structures of bio samples such as lipid and DNA. As a next 
step, it is required to visualize 3D complex structures with high order 
molecular organizations. 
In this research, we developed 3D-AFM for visualizing 3D folded structures 
of human chromosomes. Chromosome (Fig. 1a) is composed of 3D folded 
structures that has important roles for genetic transfer. However, 
nanometer-scale 3D folded structures of human chromosomes have not 
been well understood yet. It is expected that 3D-AFM contributes to 
chromosome study, but it is difficult to measure inside of 3D folded 
structures of chromosomes by conventional conical tip without damage of 
samples by tip scanning. To visualize 3D folded structures of chromosome 
by 3D-AFM, we fabricated a carbon nanotube (CNT) tip (length > 500 nm, 
diameter < 20 nm) to penetrate chromosomes by 3D-AFM. By using the 
conventional tip and home-made CNT tip (Fig. 1c(i)-d(i)), we performed 3D-
AFM of human chromosomes, and obtained 3D frequency shift (Δf) image 
(Fig. 1b). We extracted single Δf curves from the 3D Δf images obtained 
with Si tip and CNT tip, respectively (Fig. 1c(ii)-d(ii)). Δf curve using CNT tip 
shows oscillatory profile until 500 nm in depth from the surface of the 
chromosome in contrast to the Δf curve using Si tip. This result suggests 
that the obtained 3D Δf image using CNT tip reflects structures inside 
chromosome. Based on this research, applications of 3D-AFM will be 
expanded for visualizing 3D structures of biological samples in various 
research fields. 
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3:20pm BI+AS+HC+SS-MoA-6 Mass-Manufactured Surface Textures Kill 
Bacteria as Part of Low-Cost Water Purification Devices, Liza White, C. 
Howell, University of Maine 

Water purification and disinfection, particularly of turbid water, is a 
significant and growing need worldwide. Pulsed electric field (PEF) devices 
can be used to inactivate pathogens in water; however, manufacturability, 
power consumption, cost, and portability remain significant hurdles. 
Through leveraging paper industry technology in Maine, we have optimized 
electric field generation using custom textured film in a roll-to-roll 
manufacturing process to act as the functional part of portable PEF water 
purification devices. Specifically, we used commercially produced textured 
release paper as a substrate for the film electrodes and explored different 
types of metal coating to reduce the overall power consumption, cost, and 
manufacturability. CAD and modeling software was then used to simulate 
various textures to determine the optimal texture to focus the electric field 
while keeping a low total current density, and a custom texture was 
designed. The mass-manufactured textured materials were cut into 
singular flow cells and were sputter-coated with various metals and 
assembled. The flow cells were connected to a pulsed generator that 
pulsed a square wave at 15 µs at a frequency of 100 Hz with a voltage of 
100 V. Water with a known concentration of bacteria was pushed through 
the flow cells at a rate of 200 µL/minute. The outlet sample was collected, 
and bacterial reduction was calculated. These tests demonstrated that 
mass-manufactured surface textures could function as part of a low-cost 
PEF water purification device. The development of low-cost PEF water 
purification devices based on surface texture will help provide more 
accessible clean water in the face of growing water shortages. 

4:00pm BI+AS+HC+SS-MoA-8 Nature-inspired Materials for Energy and 
Environmental Sustainability, Tak Sing Wong, The Pennsylvania State 
University INVITED 

With an evolutionary history of 3.95 billion years and over 8 million species 
on earth, natural organisms have often served as blueprints for the design 
of highly functional engineered materials. In particular, natural species 
have demonstrated how different micro/nanoscale surface architectures 
can yield an array of distinct interfacial functions. Understanding the 
fundamental principles behind these natural surfaces will aid the design of 
multifunctional materials for a range of energy and sustainability 
applications. In this talk, I will discuss a number of specific examples 
showcasing our recent biologically inspired technologies which take 
inspirations from insects to plants. These examples include the 
development of anti-fouling and self-cleaning surfaces inspired by the 
slippery rims of the Nepenthes pitcher plants, as well as the fabrication of 
ultra-antireflective coatings inspired by the leafhopper-produced 
brochosomes. Perspectives on how nature-inspired materials may impact 
future applications in energy and sustainability will be discussed. 

4:40pm BI+AS+HC+SS-MoA-10 Programmable Biomimetic Light-
Harvesting Systems: Quantum-Optical Control of Light-Matter 
Interactions, A. Lishchuk, E. Csanyi, Graham Leggett, University of 
Sheffield, UK 

The absorption of light by molecules leads to the formation of excitons 
(electron-hole pairs). Control of excitons is essential for many new and 
emerging technologies, but the inefficient dynamics and short diffusion 
lengths (~ 10 nm) of excitons in molecular systems limit their 
utilisation.Theory suggests that exciton diffusion lengths could be 
enhanced by several orders of magnitude in the strong light-matter 
coupling regime. However, design principles for the production of photonic 
materials that exploit strong coupling are lacking. We have found that 
photosynthetic light-harvesting complexes (LHCs) from plants and bacteria 
are strongly coupled to localised surface plasmon resonances (LSPRs) in 
arrays of metal nanostructures, yielding macroscopically extended excited 
states that enable coherent, non-local excitation transfer and the creation 
of bespoke optical states not found under weak coupling. However, 
proteins are not suitable for putative applications of molecular photonic 
materials. Inspired by photosynthetic LHCs, we demonstrate the fabrication 
of programmable plexcitonic antenna complexes, in which polymer 
scaffolds organise excitons within localised surface plasmon resonances to 
achieve strong light-matter coupling, yielding delocalised excited states 
(plexcitons) that extend across at least 1000s of pigments. In our 
plexcitonic antenna complexes, poly(amino acid methacrylate) scaffolds 
grown from gold nanostructures by atom-transfer radical polymerisation 
(ATRP) organise excitons (transitions in chlorophylls) within LSPRs to 
achieve strong light-matter coupling, yielding Rabi energies up to twice as 
large as those achieved with biological LHCs. The energies of the resulting 
delocalised excited states (plexcitons) are programmed by varying the 

degree of polymerisation, scaffold packing density and chlorophyll loading. 
Steric hinderance in fully-dense PCysMA brushes limits binding of bulky 
chlorophylls, but the chlorophyll concentration can be increased to ~2M, 
exceeding that in biological light-harvesting complexes, by controlling the 
grafting density and polymerisation time. Moreover, synthetic plexcitonic 
antenna complexes display pH and temperature responsiveness, facilitating 
active control of strong plasmon-exciton coupling. These biologically-
inspired metamaterials offer great promise for the design of new types of 
molecular photonic device. 

5:00pm BI+AS+HC+SS-MoA-11 Microfluidic QCM with Ultrahigh Q-Factor: 
A New Paradigm for Acoustic Biosensing?, Y. Zhao, Duke University; Z. 
Parlak, Qatch LLC.; M. Yu, Duke University; D. French, Qatch LLC.; W. 
Aquino, Stefan Zauscher, Duke University 

Acoustic thickness shear mode transducers, such as the quartz crystal 
microbalance (QCM), can provide high throughput biomolecular detection 
for diagnostics with minimal sample preparation. A QCM’s resonance 
frequency change (Δf) is generally related to the mass change (Δm) due to 
analyte binding on the sensor surface. If equipped with dissipation 
monitoring, a QCM’s dissipation (D or ΔD) is related to the viscoelastic 
properties of the surface-bound analyte. Although current QCM sensors 
are simple and robust devices, they generally require high sample volumes 
and suffer from low sensitivity/resolution due to fluid damping. 

We show that by adding microfluidic channels onto QCM sensors, we can 
strongly couple small amounts of liquid within the channels to the sensor, 
thereby largely eliminating fluid damping. This coupling eliminates 
dissipation effects during shear excitation and thus dramatically increases 
the quality factor (Q-factor) of the sensor and allows for accurate 
measurement of changes in fluid density, and therefore also for 
biomolecular mass measurements in liquid environments. 

The abrogation of damping effects arises from the almost lossless coupling 
of the liquid to the side walls of the channels, which results in an in-plane 
pressure wave. We found that if the wavelength of the pressure wave is 
considerably longer than the channel width, the liquid inside the channels 
is strongly coupled to the channel walls and thus damping is suppressed. 
Since viscous effects are largely eliminated, the microfluidic QCM (µ-QCM) 
is also insensitive to temperature-induced viscosity changes. With a high Q-
factor, direct data interpretation, pure mass sensitivity and temperature 
insensitivity, and small device size, the µ-QCM provides a new paradigm for 
acoustic biosensing. 

We used Finite Element Analysis (FEA) to test our hypothesis that the in-
plane pressure wave generated by the channel side walls is responsible for 
the enhanced performance of the µ-QCM. Furthermore, we conducted a 
nondimensional analysis to reveal the most important parameters, 
including channel dimensions, crystal thickness, and fluid viscosity/density, 
and how they affect the dissipation. This knowledge can be easily extended 
to other acoustic bio-transducers to improve their sensitivity/resolution. 

Finally, we show the design and microfabrication of µ-QCM devices, and 
their testing with a range of liquids with known viscosity and density, to 
demonstrate the high Q-factor of µ-QCMs and to demonstrate the latter's 
ability to sense density changes (unencumbered by viscosity) in small (~nL) 
sample volumes. 
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